

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Approximately norm-unital products on C*-algebras, and a non-associative Gelfand–Naimark theorem

Ángel Rodríguez Palacios 1

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

ARTICLE INFO

Article history: Received 21 June 2011 Available online 12 July 2011 Communicated by Efim Zelmanov

MSC: 46B04 46L05 46L70

Keywords:

C*-algebra
JB*-triple
Non-associative C*-algebra
Automatic w*-continuity

ABSTRACT

We describe the non-associative products on a C^* -algebra A which convert the Banach space of A into a Banach algebra having an approximate unit bounded by 1, and determine among them those which are associative. As a consequence, if such a product p satisfies $p(a,b)^{\square}=p(b^{\square},a^{\square})$ and $\|p(a^{\square},a)\|=\|a\|^2$, for all $a,b\in A$ and some conjugate-linear vector space involution \square on A, then p is associative. The proof of the above result involves also a new Gelfand–Naimark type theorem asserting that non-associative C^* -algebras (defined verbatim as in the associative case, but removing associativity) are alternative if and only if they have an approximate unit bounded by 1.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The necessity of considering different products on a common Banach space originated in Arens' early paper [4], where it is shown that, given a Banach algebra A, there are two quite natural ways to extend the product of A to the bidual A^{**} of A, that the two products on A^{**} obtained in these ways need not coincide, and that none of them is better than the other. Moreover, the coincidence of the two Arens products on A^{**} is equivalent to the existence of a separately w^* -continuous bilinear extension to A^{**} of the product of A. In this case, the common value of the two Arens products becomes the unique separately w^* -continuous bilinear extension to A^{**} of the product of A, and the Banach algebra A is called Arens-regular. Consequently, since C^* -algebras are Arens-regular, and the bidual of a C^* -algebra is a von Neumann algebra in a natural way, several authors have been

E-mail address: apalacio@ugr.es.

¹ Partially supported by Junta de Andalucía grants FQM 0199 and FQM 3737, and Projects I+D MCYT-2006-15546-C02-02 and MTM-2007-65959.

interested in the question of the "automatic w^* -continuity" of operators or products on von Neumann algebras and related mathematical models. The starting point in this line of work could be dated in the Godefroy and lochum paper [18], whereas, as a relevant recent representative, we could cite the Blecher and Magajna paper [8].

A nice sample of an automatic w^* -continuity theorem, of special interest in relation to the present paper, is the following (see [18, Theorem II.1] and its proof).

Theorem 1.1. Let A be a von Neumann algebra, and let $p: A \times A \to A$ be a bilinear mapping satisfying

- $(\alpha) \|p(a,b)\| \le \|a\| \|b\| \text{ for all } a,b \in A,$
- (β) p(a, 1) = p(1, a) = a for every $a \in A$, where 1 stands for the unit of A.

Then p is separately w*-continuous.

We proved in [38, Theorem 5.17] that, if A is the von Neumann algebra of all bounded linear operators on a complex Hilbert space, and if p is as in Theorem 1.1, then there exists a real number $\alpha \in [0, 1]$ such that

$$p(a, b) = \alpha ab + (1 - \alpha)ba$$

for all $a, b \in A$. Based on this result, we proved later that, if A and p are as in Theorem 1.1, then there is a central self-adjoint element $\psi \in A$, with $0 \le \psi \le 1$, such that

$$p(a,b) = \psi ab + (\mathbf{1} - \psi)ba$$

for all $a, b \in A$. Indeed, this last result, collected in Corollary 2.8 of the present paper, follows straightforwardly from [39, Lemma 1.1] and the implication $(i) \Rightarrow (vi)$ in [39, Corollary 2.6]. We note that the result just reviewed contains Theorem 1.1, and that its proof in [39] does not involve the conclusion in that theorem.

We begin the present paper by showing that, if A and p are as in Theorem 1.1, but if we relax the requirement (β) in that theorem to the one that there exists a norm-one element $u \in A$ such that p(a, u) = p(u, a) = a for every $a \in A$, or even to the one that

 (γ) there is a net a_{λ} in the closed unit ball of A such that $\lim p(a, a_{\lambda}) = \lim p(a_{\lambda}, a) = a$ for every $a \in A$,

then p can be also reasonably described (see Corollary 2.6), so that the separate w^* -continuity of p follows straightforwardly. Even, if we relax in addition the requirement that A is a von Neumann algebra to the one that A is merely a C^* -algebra, then a (rather more involved) description of the product p can be given (see Theorem 2.11).

In Section 3, we describe and characterize those bilinear products p, on a C^* -algebra A, which satisfy requirements (α) and (γ) above (called approximately norm-unital products throughout the paper), and which are in fact associative (see Theorem 3.5). Specializations of this result in the particular case that A is a von Neumann algebra are also discussed (see Corollaries 3.3 and 3.6). Among the information contained in Theorem 3.5, we emphasize the fact that approximately norm-unital alternative products on a C^* -algebra are associative.

In Section 4, we introduce non-associative C^* -algebras (defined verbatim as in the associative case, but removing associativity), and show that non-associative C^* -algebras are alternative if (and only if) they have an approximate unit bounded by 1 (Theorem 4.7). Since alternative C^* -algebras are well understood [20,31], the above result can be seen as a non-associative version of the Gelfand-Naimark theorem. As a consequence, approximately norm-unital non-associative C^* -products on a C^* -algebra are associative (Corollary 4.9). Section 4 contains also abundant examples of non-associative C^* -products which are not alternative (see Propositions 4.10 and 4.11, and Remark 4.12).

Download English Version:

https://daneshyari.com/en/article/4586031

Download Persian Version:

https://daneshyari.com/article/4586031

<u>Daneshyari.com</u>