

Weyl denominator identity for affine Lie superalgebras with non-zero dual Coxeter number[☆]

Maria Gorelik

Dept. of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

ARTICLE INFO

Article history:

Received 1 May 2010

Available online 6 May 2011

Communicated by Vera Serganova

Keywords:

Lie superalgebras

Affine algebras

ABSTRACT

Weyl denominator identity for the affinization of a simple finite-dimensional Lie superalgebra with non-zero Killing form was stated by V. Kac and M. Wakimoto and was proven by them for the defect one case. In this paper we prove this identity.

© 2011 Elsevier Inc. All rights reserved.

0. Introduction

Let \mathfrak{g} be a simple finite-dimensional Lie superalgebra with a non-zero Killing form, which is not a Lie algebra. Their complete list is $A(m, n)$ with $m \neq n$, $B(m, n)$, $C(m)$, $F(4)$, $G(3)$ and $D(m, n)$ with $m \neq n + 1$, see [K1].

Let $\hat{\mathfrak{g}}$ be the affinization of \mathfrak{g} . Let \mathfrak{h} (resp., $\hat{\mathfrak{h}}$) be the Cartan subalgebra in \mathfrak{g} (resp., in $\hat{\mathfrak{g}}$) and let $(-, -)$ be the bilinear form on $\hat{\mathfrak{h}}^*$ which is induced by the Killing form on \mathfrak{g} . Let Δ (resp., $\hat{\Delta}$) be the root system of \mathfrak{g} (resp., of $\hat{\mathfrak{g}}$). We set

$$\Delta^\# := \{\alpha \in \Delta_{\bar{0}} \mid (\alpha, \alpha) > 0\}.$$

Then $\Delta^\#$ is a root system of a simple Lie algebra. Let $\hat{\Delta}^\#$ be the affinization of $\Delta^\#$. Denote by $\hat{W}^\#$ (resp., $W^\#$) the subgroup of $GL(\hat{\mathfrak{h}})$ generated by the reflections $s_\alpha: \alpha \in \hat{\Delta}_{\bar{0}}, (\alpha, \alpha) > 0$ (resp., $s_\alpha: \alpha \in \Delta^\#$). Then $W^\#$ is the Weyl group of $\Delta^\#$ and $\hat{W}^\#$ is the corresponding affine Weyl group. Recall that $\hat{W}^\# = W^\# \ltimes T$, where $T \subset \hat{W}^\#$ is the translation group, see [K3, Chapter 6]. Let Π be a set of simple roots for \mathfrak{g} , and let $\hat{\Pi} = \Pi \cup \{\alpha_0\}$ be the corresponding set of simple roots for $\hat{\mathfrak{g}}$. Let Δ_+ ,

[☆] Supported in part by ISF Grant No. 1142/07.

E-mail address: maria.gorelik@weizmann.ac.il.

$\hat{\Delta}_+$ be the corresponding sets of positive roots. We set

$$R := \frac{\prod_{\alpha \in \Delta_{+,0}} (1 - e^{-\alpha})}{\prod_{\alpha \in \Delta_{+,1}} (1 + e^{-\alpha})}, \quad \hat{R} := \frac{\prod_{\alpha \in \hat{\Delta}_{+,0}} (1 - e^{-\alpha})}{\prod_{\alpha \in \hat{\Delta}_{+,1}} (1 + e^{-\alpha})}.$$

Following [KW], we call R the *Weyl denominator* and \hat{R} the *affine Weyl denominator*. The Weyl denominator identity stated by V. Kac and M. Wakimoto in [KW] is as follows

$$\hat{R}e^{\hat{\rho}} = \sum_{w \in T} w(Re^{\hat{\rho}}),$$

where $\hat{\rho} \in \hat{\mathfrak{h}}^*$ is such that $2(\hat{\rho}, \alpha) = (\alpha, \alpha)$ for each $\alpha \in \Pi$. Another form of this identity is given in formula (2). In this paper we prove this identity.

In the paper [G] we proved the analog of Weyl denominator identity for finite-dimensional Lie superalgebras (also formulated and partially proven by Kac–Wakimoto); this result is used in the proof below.

1. Kac–Moody superalgebras

The notions of a Kac–Moody superalgebras and its Weyl group were introduced in [S]. We recall some definitions below and then prove Lemmas 1.3.2, 1.5.1. In the sequel, we will apply these lemmas to the case of affine Lie superalgebras; in this case the lemmas can be also verified using the explicit description of root systems.

1.1. Construction of Kac–Moody superalgebras. Let $A = (a_{ij})$ be an $n \times n$ -matrix over \mathbb{C} and let τ be a subset of $I := \{1, \dots, n\}$. Let $\mathfrak{g} = \mathfrak{g}(A, \tau) = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ be the associated Lie superalgebra constructed as in [K2, K3]. Recall that, in order to construct $\mathfrak{g}(A, \tau)$, one considers a realization of A , i.e. a triple $(\mathfrak{h}, \Pi, \Pi^\vee)$, where \mathfrak{h} is a vector space of dimension $n + \text{corank } A$, $\Pi \subset \mathfrak{h}^*$ (resp. $\Pi^\vee \subset \mathfrak{h}$) is a linearly independent set of vectors $\{\alpha_i\}_{i \in I}$ (resp. $\{\alpha_i^\vee\}_{i \in I}$), such that $\langle \alpha_i, \alpha_j^\vee \rangle = a_{ji}$, and constructs a Lie superalgebra $\tilde{\mathfrak{g}}(A, \tau)$ on generators e_i, f_i, \mathfrak{h} , subject to relations:

$$[\mathfrak{h}, \mathfrak{h}] = 0, \quad [h, e_i] = \langle \alpha_i, h \rangle e_i, \quad [h, f_i] = -\langle \alpha_i, h \rangle f_i, \quad \text{for } i \in I, h \in \mathfrak{h}, \quad [e_i, f_j] = \delta_{ij} \alpha_i^\vee, \\ p(e_i) = p(f_i) = \bar{1} \quad \text{if } i \in \tau, \quad p(e_i) = p(f_i) = \bar{0} \quad \text{if } i \notin \tau, \quad p(\mathfrak{h}) = \bar{0}.$$

Then $\mathfrak{g}(A, \tau) = \tilde{\mathfrak{g}}(A, \tau)/J = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$, where J is the maximal ideal of $\tilde{\mathfrak{g}}(A, \tau)$, intersecting \mathfrak{h} trivially, and \mathfrak{n}_+ (resp. \mathfrak{n}_-) is the subalgebra generated by the images of the e_i 's (resp. f_i 's). We obtain the triangular decomposition $\mathfrak{g}(A) = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$.

Let Δ be the set of roots of $\mathfrak{g}(A)$, i.e. $\Delta = \{\alpha \in \mathfrak{h}^* \mid \alpha \neq 0 \text{ and } \mathfrak{g}_\alpha \neq 0\}$, $\Delta_+ = \{\alpha \in \mathfrak{h}^* \mid \mathfrak{g}_\alpha \neq 0\}$, $\Delta_- = \{\alpha \in \mathfrak{h}^* \mid \mathfrak{g}_{-\alpha} \neq 0\}$. One has $\Delta = \Delta_+ \sqcup \Delta_-$, $\Delta_- = -\Delta_+$.

We say that a simple root α_i is *even* (resp., *odd*) if $i \notin \tau$ (resp., $i \in \tau$) and that α_i is *isotropic* if $a_{ii} = 0$. One readily sees that if $i \in \tau$ (i.e., e_i, f_i are odd), then $[e_i, e_i], [f_i, f_i] \in J$ iff $a_{ii} = 0$. Therefore for a simple root α one has $2\alpha \in \Delta$ iff α is a non-isotropic and odd.

Note that, multiplying the i -th row of the matrix A by a non-zero number corresponds to multiplying e_i and α_i^\vee by this number, thus giving an isomorphic Lie superalgebra. Hence we may assume from now on that $a_{ii} = 2$ or 0 for all $i \in I$.

1.1.1. We consider the case when the Cartan matrix $A = (a_{ij})$ is such that

- (1) $a_{ii} \in \{0, 2\}$ for all $i \in I$ and $a_{ij} = 0$ forces $a_{ji} = 0$;
- (2) if $i \notin \tau$, then $a_{ii} = 2$ and $a_{ij} \in \mathbb{Z}_{\leq 0}$ for $j \neq i$;
- (3) if $i \in \tau$ and $a_{ii} = 2$, then $a_{ij} \in 2\mathbb{Z}_{\leq 0}$ for $j \neq i$.

Download English Version:

<https://daneshyari.com/en/article/4586229>

Download Persian Version:

<https://daneshyari.com/article/4586229>

[Daneshyari.com](https://daneshyari.com)