

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The Zariski–Lipman conjecture for complete intersections

Rolf Källström

University of Gävle, Department of Mathematics, Gävle, Sweden

ARTICLE INFO

Article history:

Received 28 September 2010 Available online 13 May 2011 Communicated by J.T. Stafford

MSC:

primary 14A10, 32C38 secondary 17B99

Keywords:

Smooth morphisms Commutative algebra Algebraic geometry Derivations

ABSTRACT

The tangential branch locus $B_{X/Y}^t \subset B_{X/Y}$ is the subset of points in the branch locus where the sheaf of relative vector fields $T_{X/Y}$ fails to be locally free. It was conjectured by Zariski and Lipman that if V/k is a variety over a field k of characteristic 0 and $B_{V/k}^t = \emptyset$, then V/k is smooth (= regular). We prove this conjecture when V/k is a locally complete intersection. We prove also that $B_{V/k}^t = \emptyset$ implies $\operatorname{codim}_X B_{V/k} \leqslant 1$ in positive characteristic, if V/k is the fibre of a flat morphism satisfying generic smoothness.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let $\pi: X \to Y$ be a morphism of noetherian schemes which is locally of finite type, $\Omega_{X/Y}$ its sheaf of Kähler differentials, and $T_{X/Y} = Hom_{\mathcal{O}_X}(\Omega_{X/Y}, \mathcal{O}_X)$ the sheaf of relative tangent vector fields. We have the inclusion of the tangential branch locus in the branch locus

$$B_{\pi}^t = \{x \in X \mid T_{X/Y,x} \text{ is not free}\} \subset B_{\pi} = B_{X/Y} = \{x \in X \mid \Omega_{X/Y,x} \text{ is not free}\}.$$

Define as in [5, Definitions 17.1.1 and 17.3.1] a morphism π to be formally smooth at a point x in X if the induced map of local rings $\mathcal{O}_{Y,\pi(x)} \to \mathcal{O}_{X,x}$ is formally smooth, and that π is smooth at x if it is locally finitely presented and formally smooth; say also that π is smooth if it is smooth at all points in X. In the light of the fact that the Jacobian criterion, namely that $B_{\pi} = \emptyset$, goes a long way to implying that the morphism π is smooth (Theorems 3.1 and 3.3), it is a natural to ask, with Zariski and Lipman [12], what are the implications of $B_{\pi}^t = \emptyset$? The example $X = \operatorname{Spec} A[x]/(x^2) \to Y = \operatorname{Spec} A$, i.e. the scheme of dual numbers over a commutative ring A, shows that if we want π

E-mail address: rkm@hig.se.

to be smooth, the condition $B_{\pi}^t = \emptyset$ needs at least to be supplemented with the condition that the rank of $T_{X/Y}$ equals the relative dimension at each point in X, which can be imposed by assuming that X/Y is smooth at generic points in X. It is a remarkable fact that although $T_{X/Y}$ cannot even directly detect torsion in $\Omega_{X/Y}$, it turns out that these conditions combined imply $B_{\pi} = \emptyset$ (and hence imply that π is smooth) in interesting cases in characteristic 0. Already the result that $B_{Y/k}^t = 0$ implies smoothness when V/k is a curve over a field of characteristic 0, due to Lipman [12], is, I think, quite surprising and non-trivial (see Proposition 4.4). In positive characteristic it is easy to see that smoothness at points of height ≤ 1 does not follow from $B_{\pi}^t = \emptyset$, so one could perhaps add the assumption $\operatorname{codim}_X B_{\pi} \geqslant 2$; but this is still not enough. What is needed is a condition on the discriminant locus $D_{\pi} = \pi(B_{\pi})$. Before the main results are presented we describe some terminology.

Generalities. All schemes are assumed to be noetherian and we use the notation in EGA, but see also [13, §5] and [8]. The height $\operatorname{ht}_X(x)$ of a point x in X is the same as the Krull dimension of the local ring $\mathcal{O}_{X,X}$ at x, and the dimension of X is defined as $\dim X = \sup\{\operatorname{ht}(x) \mid x \in X\}$. The dimension at a point x in X is

$$\dim_X X = \sup \{ \operatorname{ht}(x_1) \mid x_1 \in X \text{ and } x \text{ specialises to } x_1 \};$$

see [4, Proposition 5.1.4]. A point x in a subset T of X is maximal if for each point y in T that belongs to the closure $\{x\}^-$ of $\{x\}$ (in other words, x specialises to y (see [8, p. 93])), we have $ht(x) \le ht(y)$. That is, if $x' \in T$ specialises to x, and $ht(x') \le ht(x)$, then x' = x. Denote by Max(T) the set of maximal points of T, so Max(X) consists of points of height 0. A property on X is generic if it holds for all points in Max(X). Put

$$\operatorname{codim}_{X}^{+} T = \sup \{ \operatorname{ht}(x) \mid x \in \operatorname{Max}(T) \},$$
$$\operatorname{codim}_{X}^{-} T = \inf \{ \operatorname{ht}(x) \mid x \in \operatorname{Max}(T) \},$$

so $\operatorname{codim}_X^- T \leqslant \operatorname{ht}(x) \leqslant \operatorname{codim}_X^+ T$ when $x \in \operatorname{Max}(T)$. If T is the empty set, put $\operatorname{codim}_X^+ T = -1$ and $\operatorname{codim}_X^- T = \infty$, since we are interested in lower and higher bounds on $\operatorname{codim}_X^+ T$, respectively. For a coherent \mathcal{O}_X -module M, the stalk at a point x is denoted M_X and we put $\operatorname{depth}_T M = \inf\{\operatorname{depth} M_X \mid x \in T\}$. The fibre X_y over a point y in Y is the fibre product $\operatorname{Spec} k_{Y,y} \times_Y Y$, where $k_{Y,y}$ is the residue field at y. We define the *relative dimension* $d_{X/Y,X}$ of π at a point $x \in X$ as the infimum of the dimension of the vector space of Kähler differentials at all maximal points ξ that specialise to x, i.e.

$$d_{X/Y,x} = \inf \{ \dim_{k_{X,\xi}} k_{X,\xi} \otimes_{\mathcal{O}_{X,\xi}} \Omega_{X/Y,\xi} \mid x \in \{\xi\}^-, \ \xi \in \operatorname{Max}(X) \}.$$

To understand this number it is useful recall that

$$\begin{split} \dim_{k_{X,\xi}} k_{X,\xi} \otimes_{\mathcal{O}_{X},\xi} \Omega_{X/Y,\xi} &= \dim_{k_{X_{\pi(\xi)},\xi}} \Omega_{X_{\pi(\xi)}/k_{Y,\pi(\xi)}} \\ &= \dim_{k_{X,\xi}} k_{X,\xi} \otimes_{\mathcal{O}_{X,\xi}} \Omega_{\mathcal{O}_{X,\xi}/\mathcal{O}_{Y,\pi(\xi)}}; \end{split}$$

see Proposition 2.1 for the first equality, but note that in general the numbers $d_{X/Y,x}$ and $\dim_X X_{\pi(x)}$ are not equal. On the other hand, if π is flat at x, then $\dim_X X_{\pi(x)} = \dim \mathcal{O}_{X,x} - \dim \mathcal{O}_{Y,\pi(x)}$, and if moreover π is smooth at all points $\xi \in \operatorname{Max}(X)$ that specialise to x, then $d_{X/Y,x} = \dim_X X_{\pi(x)}$.

Recall also (this is an easy extension of [8, Chapter II, Lemma 8.9]):

(*) a coherent \mathcal{O}_X -module M is free at a point x if M_ξ is free of rank equal to $\dim_{k_{X,x}} k_{X,x} \otimes_{\mathcal{O}_{X,x}} M_X$ for each $\xi \in \operatorname{Max}(X)$ that specialises to x.

Download English Version:

https://daneshyari.com/en/article/4586235

Download Persian Version:

https://daneshyari.com/article/4586235

<u>Daneshyari.com</u>