

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Automorphisms of polynomial algebras and Dirichlet series

Vesselin Drensky^{a,1}, Jie-Tai Yu^{b,*,2}

^a Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
^b Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

ARTICLE INFO

Article history: Received 18 June 2008 Available online 26 September 2008 Communicated by Changchang Xi

Keywords: Automorphisms Polynomial algebras Free associative algebras Finite fields Coordinates Nielsen–Schreier varieties Dirichlet series Generating functions

ABSTRACT

Let $\mathbb{F}_q[x, y]$ be the polynomial algebra in two variables over the finite field \mathbb{F}_q with q elements. We give an exact formula and the asymptotics for the number p_n of automorphisms (f, g) of $\mathbb{F}_q[x, y]$ such that $\max\{\deg(f), \deg(g)\} = n$. We describe also the Dirichlet series generating function

$$p(s) = \sum_{n \ge 1} \frac{p_n}{n^s}.$$

The same results hold for the automorphisms of the free associative algebra $\mathbb{F}_q(x, y)$. We have also obtained analogues for free algebras with two generators in Nielsen–Schreier varieties of algebras.

© 2008 Elsevier Inc. All rights reserved.

Introduction

Our paper is devoted to the following problem. Let $\mathbb{F}_q[x, y]$ be the polynomial algebra in two variables over the finite field \mathbb{F}_q with q elements. We would like to determine the number of \mathbb{F}_q -automorphisms $\varphi = (f, g)$ of $\mathbb{F}_q[x, y]$ satisfying $\deg(\varphi) := \max\{\deg(f), \deg(g)\} = n$. Here $\varphi = (f, g)$ means that $f = \varphi(x)$, $g = \varphi(y)$.

Our consideration is motivated by Arnaud Bodin [B], who raised the question to determine the number of \mathbb{F}_q -automorphisms φ with deg $(\varphi) \leq n$.

In the sequel all automorphisms are \mathbb{F}_q -automorphisms. The theorem of Jung and van der Kulk [J,K] states that the automorphisms of the polynomial algebra K[x, y] over any field K are tame. In other words the group Aut(K[x, y]) is generated by the subgroup A of affine automorphisms

² The research of Jie-Tai Yu was partially supported by an RGC-CERG grant.

0021-8693/\$ - see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2008.08.026

^{*} Corresponding author.

E-mail addresses: drensky@math.bas.bg (V. Drensky), yujt@hkucc.hku.hk (J.-T. Yu).

¹ The research of Vesselin Drensky was partially supported by Grant MI-1503/2005 of the Bulgarian National Science Fund.

$$\alpha = (a_1x + b_1y + c_1, a_2x + b_2y + c_2), \quad a_i, b_i, c_i \in K, \ a_1b_2 \neq a_2b_1,$$

and the subgroup B of triangular automorphisms

$$\beta = (ax + h(y), by + b_1), \quad 0 \neq a, b \in K, \ b_1 \in K, \ h(y) \in K[y].$$

The proof of van der Kulk [K] gives that Aut(K[x, y]) has the following nice structure, see e.g. [C]:

$$\operatorname{Aut}(K[x, y]) = A *_{C} B, \quad C = A \cap B,$$

where $A *_C B$ is the free product of A and B with amalgamated subgroup $C = A \cap B$. Using the canonical form of the elements of Aut(K[x, y]) we have calculated explicitly the number p_n of automorphisms of degree n:

$$p_1 = q^3 (q-1)^2 (q+1),$$

$$p_n = \left(q(q-1)(q+1)\right)^2 \sum \left(\frac{q-1}{q}\right)^k q^{n_1 + \dots + n_k}, \quad n > 1,$$

where the summation is on all ordered factorizations $n = n_1 \cdots n_k$ of n, with $n_1, \ldots, n_k > 1$.

It is natural to express the sequence p_n , n = 1, 2, ..., in terms of its generating function. When the elements p_n of the sequence involve sums on the divisors of the index n it is convenient to work with the Dirichlet series generating function, i.e., with the formal series

$$p(s) = \sum_{n \ge 1} \frac{p_n}{n^s}.$$

For the Riemann zeta function $\zeta(s)$ the coefficients of $\zeta^k(s)$ count the number of ordered factorizations $n = n_1 \cdots n_k$ in k factors. (We have to take $(\zeta(s) - 1)^k$ if we want to count only factorizations with $n_i \ge 2$.) Similarly, the coefficients of the kth power $\rho^k(s)$ of the formal Dirichlet series

$$\rho(s) = \sum_{n \ge 2} \frac{q^n}{n^s}$$

are equal to $q^{n_1+\dots+n_k}$ in the expression of p_n . Hence $\rho(s)$ may be considered as a *q*-analogue of $\zeta(s)$, although it does not satisfy many of the nice properties of the Riemann zeta function (because the sequence q^n is not multiplicative) and for q > 1 is not convergent for any nonzero *s* (because its coefficients grow faster than n^s). We have found that

$$p(s) = (q(q-1)(q+1))^2 \left(\sum_{k \ge 0} \frac{q-1}{q} \rho^k(s) - \frac{1}{q+1}\right)$$
$$= (q(q-1)(q+1))^2 \left(\frac{1}{1 - \frac{q-1}{q}\rho(s)} - \frac{1}{q+1}\right)$$

and have given an estimate for the growth of p_n . For $n \ge 2$

$$(q-1)^3(q+1)^2q^{n+1} \leq p_n \leq (q-1)^3(q+1)^2q^{n+1} + (\log_2 n)^{\log_2 n}q^{n/2+8}.$$

Hence for a fixed *q* and any $\varepsilon > 0$,

$$p_n = (q-1)^3 (q+1)^2 q^{n+1} + \mathcal{O}(q^{n(1/2+\varepsilon)}).$$

Download English Version:

https://daneshyari.com/en/article/4587280

Download Persian Version:

https://daneshyari.com/article/4587280

Daneshyari.com