
The Journal of Systems and Software 84 (2011) 976–984

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

Function point measurement from Web application source code based
on screen transitions and database accesses

T. Edagawaa,1, T. Akaikea,2, Y. Higoa, S. Kusumotoa,∗, S. Hanabusab, T. Shibamotob

a Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
b Hitachi Systems & Services, Ltd., Otaku, Tokyo, Japan

a r t i c l e i n f o

Article history:
Received 7 April 2010
Received in revised form
12 December 2010
Accepted 13 January 2011
Available online 25 January 2011

Keywords:
Function point
Estimation
IFPUG
Web application
Empirical Software Engineering

a b s t r a c t

A function point (FP) is a unit of measurement that expresses the degree of functionality that an infor-
mation system provides to a user. Many software organizations use FPs to estimate the effort required
for software development. However, it is essential that the definition of 1 FP be based on the software
development experience of the organization. In the present study, we propose a method by which to
automatically extract data and transaction functions from Web applications under several conditions
using static analysis. The proposed method is based on the International Function Point Users Group
(IFPUG) method and has been developed as an FP measurement tool. We applied the proposed method
to several Web applications and examined the difference between FP counts obtained by the tool and
those obtained by a certified FP specialist (CFPS). The results reveal that the numbers of data and trans-
action functions extracted by the tool is approximately the same as the numbers of data and transaction
functions extracted by the specialist.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In the planning of software projects, software size is an impor-
tant factor for estimating the development effort or development
period. The function point (FP) (Albrecht, 1994) is a software
size metric that is widely used in business application software
development. Since FPs measure the functional requirements, the
measured software size remains constant regardless of the pro-
gramming language, design technology, or development skills
involved. In addition, when planning development projects, FP
measurement can be applied early in the development process.
A number of FP methods have been proposed. The International
Function Point Users Group (IFPUG) method and the COSMIC
method have been widely used in software organizations.

However, a number of problems with these methods remain
to be solved. One such problem is benchmarking (IFPUG, 2002). If
an organization introduces FP for development effort or develop-
ment period estimation, base data must be collected. That is, FPs

∗ Corresponding author at: Department of Computer Science, Graduate School of
Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka
565-0871, Japan. Tel.: +81 6 6879 4110; fax: +81 6 6879 4114.

E-mail addresses: higo@ist.osaka-u.ac.jp (Y. Higo), kusumoto@ist.osaka-u.ac.jp
(S. Kusumoto), shigeo.hanabusa.zg@hitachi-solutions.com (S. Hanabusa),
toshihisa.shibamoto.hz@hitachi-solutions.com (T. Shibamoto).

1 Currently, he belongs to Tecmo Koei Holdings Co., Ltd., Japan.
2 Currently, he belongs to Hitachi, Ltd., Japan.

must be measured on the basis of software that was developed
previously by the organization using a typical development pro-
cess. Usually, FPs are counted from design specifications. However,
during development, a number of functionalities are frequently
added and modified. Therefore, the actual functionalities exist only
in the source code and counting FPs from source code is costly.
Moreover, differences may occur for the same product, even in the
same organization, because FP measurement involves judgment on
the part of the counter (Kitchenham, 1997). For example, Low and
Jeffery (1990) reported that a 30% variance was generated within
one organization and a variance of over 30% is generated across
organizations. One promising approach to solving these problems
is to automate the FP measurement.

Several studies have investigated automation of FP measure-
ment from design specifications. For example, Diab et al. (2002)
proposed a formalization of the IFPUG FP definition for automated
measurement of B specifications. Lamma et al. (2004) presented a
tool for FP measurement from the specifications of a software sys-
tem expressed in the form of an Entity Relationship (ER) diagram
and a Data Flow Diagram (DFD). Cantone et al. (2004) considered
the convertibility of the elements of the UML into entities of the
FPA, introduced a model for establishing the link between these,
and conducted a pilot study comparing the FP count obtained by
the model with that obtained by a CFPS. We previously proposed
a method by which to automate FP measurement from require-
ments specifications and UML design specifications (Kusumoto
et al., 2000; Uemura et al., 2001). Automating FP measurement

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.01.029

dx.doi.org/10.1016/j.jss.2011.01.029
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:higo@ist.osaka-u.ac.jp
mailto:kusumoto@ist.osaka-u.ac.jp
mailto:shigeo.hanabusa.zg@hitachi-solutions.com
mailto:toshihisa.shibamoto.hz@hitachi-solutions.com
dx.doi.org/10.1016/j.jss.2011.01.029


T. Edagawa et al. / The Journal of Systems and Software 84 (2011) 976–984 977

from these specifications is pragmatic in the early phase of software
development.

We have investigated automatic FP measurement for object-
oriented software in collaboration with Osaka University and
Hitachi Systems & Services (Kusumoto et al., 2000, 2002; Uemura
et al., 2001). In Kusumoto et al. (2002), we attempted to measure
the FP count on the basis of the execution trace data of a Java pro-
gram. However, it is necessary to prepare a sufficient number of
test cases that execute all of the functionalities of the program. In
addition, the accuracy of the FPs measured by this method was not
high. Thus, the method was not adequate for practical application
in the context of Hitachi Systems & Services.

In the present paper, we intend to examine the possibility of
automatic FP measurement from source code by static analysis.
First, we propose a measurement method by which to count data
and transaction functions from Web application source code under
several conditions. We then develop an FP measurement tool based
on the proposed method. Finally, we apply the developed tool
to seven independently developed Java programs with the same
specifications and examined the difference between the FP values
obtained by the tool and the FP values obtained by a CFPS at Hitachi
Systems & Services. The results represent the applicability of the
proposed method.

The contributions of the present paper are as follows:

• The present paper describes a concrete FP measurement proce-
dure for a typical Web application software.

• An FP measurement tool based on the proposed method is devel-
oped.

• The results of case studies conducted for several Web appli-
cations are presented. These applications are not commercial
software applications but have the characteristics of actual soft-
ware. Finally, the validity of these results is confirmed.

The remainder of the present paper is organized as follows. Sec-
tion 2 presents an overview of FP analysis and the IFPUG method.
The proposed method is explained in Section 3. A brief explana-
tion of the FP measurement tool based on the proposed method is
given in Section 4. Section 5 presents the results of the case studies
and a discussion of the results. Section 6 describes related research,
and Section 7 discusses the strengths and weaknesses of the pro-
posed method. Finally, the conclusions and areas for future study
are presented in Section 8.

2. Function point analysis

2.1. Overview

An FP is a unit of measurement that expresses the degree of
functionality provided by software. FPs can be determined from
the requirements specifications, the design specifications, and the
program code. Unlike Lines of Code (LOC), since the FP measures
functionality, the FP is said to be independent of the technology
and programming language used for the software implementation.

Albrecht (1994) proposed the original FP analysis. Since then,
several types of FP analysis methods, such as the IFPUG method, the
COSMIC method, 3D FPs (Jones, 1996), Feature Points (Jones, 1996),
and MarkII (Symons, 1991), have been proposed. In the present
paper, we focus on the IFPUG method, because, compared to other
methods, this method provides detailed procedures and rules for
FP counting and has been widely applied to business application
software.

2.2. IFPUG method

The IFPUG method is a modified version of Albrecht’s FP method.
In the IFPUG method, the complexity of the software is objectively

Table 1
RET/DET complexity matrix.

RET DET

1–19 20–50 51–

1 Low Low Average
2–5 Low Average High
6– Average High High

established and the rules of the counting procedures are described
in detail.

In the IFPUG method, the FP counting procedure consists of
seven steps. Step 1: Determine the type of FP counting, Step 2: Iden-
tify the counting boundary, Step 3: Count the data function types,
Step 4: Count the transaction function types, Step 5: Determine
the unadjusted FP count, Step 6: Determine the value adjustment
factor, and Step 7: Calculate the final adjusted FP count.

In the following, we explain Steps 2, 3, 4, and 5 in order to clarify
the rules proposed in Section 3.

Step 2 (Identify the counting boundary): A boundary indicates the
border between the application or project being measured and the
external applications or the user domain. A boundary establishes
which functions are included in the FP count.
Step 3 (Count the data function types): Data function types rep-
resent the functionality provided to a user to meet internal and
external data requirements. Data function types are classified into
the following two types: internal logical files (ILFs) and external
interface files (EIFs).

Data functions are defined as follows:
Internal logical file (ILF): (1) The group of data is a user-
identifiable group of data. (2) The group of data is maintained
within the application boundary. (3) The group of data identified
has not been counted as an EIF for the application.
External interface file (EIF): (1) The group of data is a user-
identifiable group of data. (2) The group of data is not maintained
by the application being counted. (3) The group of data identified
has not been counted as an ILF for the application.

Here, the term “file” refers to a logically related group of data
and not to the physical implementation of this group of data.

Then, assign a functional complexity to each identified ILF or
ELF based on the number of data element types (DETs) and record
element types (RETs) associated with the ILF or EIF using the
RET/DET complexity matrix (see Table 1). A DET is a unique user-
recognizable, non-recursive field on the ILF or EIF. An RET is a
user-recognizable subgroup of data elements within an ILF or EIF.
Step 4 (Count the transaction function types): Transaction func-
tion types represent the functionality provided to a user for the
processing of data by an application. There are three transac-
tion function types: external input (EI), external output (EO), and
external inquiry (EQ). These transaction functions are defined as
follows:
External input (EI): An external input processes data or control
information that comes from outside the application’s boundary.
The external input itself is an elementary process.
External output (EO): An external output is an elementary pro-
cess that generates data or control information sent outside the
application’s boundary.
External inquiry (EQ): An external inquiry is an elementary pro-
cess made up of an input–output combination that results in data
retrieval. The output contains no derived data. Here, derived data
is data that requires processing other than direct retrieval and
editing of information from internal logical files and/or exter-
nal interface files. No internal logical file is maintained during
processing.



Download English Version:

https://daneshyari.com/en/article/458740

Download Persian Version:

https://daneshyari.com/article/458740

Daneshyari.com

https://daneshyari.com/en/article/458740
https://daneshyari.com/article/458740
https://daneshyari.com

