
The Journal of Systems and Software 84 (2011) 1008–1021

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

A framework for developing home automation systems: From requirements
to code

Pedro Sánchez ∗, Manuel Jiménez, Francisca Rosique, Bárbara Álvarez, Andrés Iborra
Systems and Electronic Engineering Division (DSIE), Technical University of Cartagena, Campus Muralla del Mar s/n, 30202, Cartagena, Spain

a r t i c l e i n f o

Article history:
Received 28 June 2010
Received in revised form
14 December 2010
Accepted 19 January 2011
Available online 1 February 2011

Keywords:
Home automation
Model driven
Code generation

a b s t r a c t

This article presents an integrated framework for the development of home automation systems following
the model-driven approach. By executing model transformations the environment allows developers to
generate executable code for specific platforms. The tools presented in this work help developers to
model home automation systems by means of a domain specific language which is later transformed
into code for home automation specific platforms. These transformations have been defined by means of
graph grammars and template engines extended with traceability capabilities. Our framework also allows
the models to be reused for different applications since a catalogue of requirements is provided. This
framework enables the development of home automation applications with techniques for improving
the quality of both the process and the models obtained. In order to evaluate the benefits of the approach,
we conducted a survey among developers that used the framework. The analysis of the outcome of this
survey shows which conditions should be fulfilled in order to increase reusability.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Rapid advances in electronics, information and communications
technology (leading to miniaturization and improvement of per-
formance of computers, sensors and networking) have given rise
to the development of several home automation (HA) technolo-
gies (Chana et al., 2009). HA applications integrate comfort, energy
saving, security and communications functions. The aim of an HA
system is to provide homes with a certain degree of ‘intelligence’
and to improve the quality of life of its inhabitants. Tasks like auto-
matically switching lights and heating, cutting off the supply when
gas or water leaks are detected or controlling the home devices
remotely from a mobile or a computer through an Internet connec-
tion are typical applications of HA domain.

There are several HA standards and protocols adopted by
the leading companies in the market. Some notable examples
are KNX (ISO/IEC14543-3-X and EN50090 standards), Lonworks
(ISO/IEC 14908, EN14908 and EIA-709-1 standards) and X10 (a well
known international and open industry standard for communica-
tion among electronic devices). However, one of the main problems
of HA development resides in the fact that there is no consensus in
the standard to implement these applications. As stated in Miori
et al. (2006), it is improbable that there will be a single dominant
technology for HA in short term. Furthermore, each of such stan-

∗ Corresponding author. Tel.: +34 968326460; fax: +34 968325973.
E-mail address: pedro.sanchez@upct.es (P. Sánchez).

dards provides its own software suite to create HA applications and
program the devices in question. Hence the particular technology
(specific platform) must be selected at the initial design stage, as
much as the tools and devices to be used depend on this choice.
These facts make the development of HA applications strongly plat-
form dependent, making it very difficult to raise the abstraction
level and work with HA domain concepts rather than technology
elements.

This drawback can be avoided by adopting the well known
Model-Driven Development technique (MDD) (Selic, 2003). In this
approach, application code can be automatically generated from
platform-independent models. Although MDD techniques have
been developed some years ago, there are no well known integrated
frameworks for developing HA systems. However, there is currently
a need for the creation of tools to develop these systems. These
tools should allow the generation of code for several platforms.
In this work, we present an integrated framework that allows the
definition of HA systems at different levels of abstraction, from
requirements to code. Taking advantage of using a domain specific
language (DSL) (Mernik et al., 2005) the developer can work with
graphical elements and concepts of the HA domain.

DSLs provide easy, intuitive domain-specific descriptions of
systems using graphical or textual models. A DSL includes the
tooling infrastructure for creating and transforming models into
executable instances of the language (Kelly and Tolvanen, 2008). In
this context, the appearance of the MDD approach has increased the
research on these languages as well as new automatic code genera-
tion techniques. Nevertheless, the development of DSLs is very time

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.01.052

dx.doi.org/10.1016/j.jss.2011.01.052
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:pedro.sanchez@upct.es
dx.doi.org/10.1016/j.jss.2011.01.052


P. Sánchez et al. / The Journal of Systems and Software 84 (2011) 1008–1021 1009

consuming: ideally, models made using a particular DSL should
be able to be reused across several implementations to amortize
this effort. The reuse of DSL models across different development
projects can help reduce the cost of these projects.

Several works discuss advantages and drawbacks of using DSLs.
Maintenance, flexibility, productivity, reliability and reusability are
attributes commonly found in these types of languages (Hermans
et al., 2009). With DSLs, reuse is feasible at the model level, making
it possible to reuse partial or entire models, rather than pieces of
platform-dependent code. Thus, the beginning of a new software
development project can be done from existing reusable assets. A
surprising fact is that reuse hardly plays a significant role in current
DSLs as demonstrated in Hermans et al. (2009) for the study of a
particular DSL.

We identify two key aspects that determine the feasibility of
reuse in the context of DSLs: (1) to select a model or a model frag-
ment for reuse you must know what is does; and (2) to achieve
effective reuse, you must be able to discover the model fragment
faster than you could build it. Besides, the use of best practices
for DSL definition and implementation determines the success
in model reuse. For instance, language creators usually try to
avoid modeling errors by imposing dozens of strongly enforced
integrity rules that prevent modelers from temporarily breaking
the rules while they are trying to reuse their models. Moreover,
interconnected models should have minimal coupling to improve
modularization and avoid data duplication which lead to mainte-
nance and reuse problems.

In short, this article contributes to the state of the art with the
following features:

• A framework that integrates a set of tools for defining HA appli-
cations at different levels of abstractions.

• A set of model transformations (Mens and van Gorp, 2006) that
enables developers to get full executable code.

• Traceability capabilities (Ramesh and Jarke, 2001) to improve
quality both of the process and of the models obtained.

• A survey that demonstrates the success of reusing models in MDD
by means of generic requirements. We investigate factors that
contribute to this success.

The article is structured as follows: Section 2 deals with intro-
ducing the basis of the proposal and the related works. Section
3 presents the proposed framework and also offers a general
overview of the implementation using Eclipse. Section 4 explains
the developed tool for managing traceability. Section 5 gives a
cost model of the approach. Section 6 details an evaluation of the
approach based on a survey and a comparison of the developed
tool with two HA commercial tools. Finally, Section 7 is dedicated
to conclusions and future work.

2. Foundations and related work

2.1. Home automation systems development

At the present time, developers of HA applications mainly use
software tools provided either by the device manufacturer, in
the case of proprietary system, or by the associations responsible
for providing support for the technology in the case of the stan-
dard systems. These tools are usually platform-dependent, code
generation-oriented integrated environments which do little to
raise the level of abstraction. Moreover, the concrete syntax that
they use is not usually very intuitive, so that the user requires very
specialized training and can only work in the immediate context of
the solution.

The whole process of development of HA applications is carried
out by an expert in the domain who collates the customer’s require-
ments for an installation (elements to be integrated, services
required, selection of a concrete technology, etc.) based on his own
experience. This expert carries out the selection and deployment
of the devices and afterwards programs them (using a platform-
dependent development infrastructure) so as to achieve the desired
functionality. Working in this manner it is rather difficult to achieve
some of the desired attributes of software systems such as inter-
operability, flexibility, re-use and productivity. Besides, tools to
develop projects are completely different in each platform, so
learning a new technology implies new training. Thus, developers
usually focus on a particular technology, leaving aside other plat-
forms. This is due to the long training time and high specialization
required (a good developer would need to have undertaken around
100 h of training and have months of practice).

2.2. Related work

2.2.1. MDD for HA development
The literature offers a few examples of works which try to

reach in an integrated way the development of HA systems using
an MDD approach. Among these it is important to highlight the
works of Muñoz et al. (2006), Voelter and Groher (2007) and Nain
et al. (2008) that outline the necessity of using a model driven
approach in HA systems development. The aim is to increase the
level of abstraction, the productivity and the quality of the software,
besides maintaining the independence of the implementation plat-
form. These proposals represent a good example of the advantages
that the use of MDD offers in the development of HA systems, but
they also present some drawbacks. In the first place, Muñoz uses
the UML notation for requirement elicitation which is not very intu-
itive for experts in the field of HA. In the work of Voelter, a set
of HA devices is defined in the meta-model. Applications are cre-
ated using the tool named Tree Editor provided by the plug-in EMF
for Eclipse. Hence to use an HA device not included in the meta-
model, it is necessary to build a new meta-model or extend the
existing one. Nain presents EnTiMid as a middleware composed of
several layers. A driver layer is in charge of the connection between
the devices and the Unified Service layer. A bridge layer links the
Unified Service instances to diverse service technologies such as
Universal Plug And Play (UPnP) and Devices Profile for Web Ser-
vices (DPWS) (Jammes et al., 2005). The work defines EnTiMid as a
middleware implementation that supports various services access
models and also describes how these artifacts are generated using
MDD.

In these proposals the code generation is oriented to obtain OSGi
(Open Service Gateway Initiative) drivers for a server or middle-
ware platform, and not to the programming of the HA devices.
Therefore, it will always be necessary an expert of the specific
platform to program these devices.

Contrary to the previous examples, in our framework the level of
abstraction and usability of requirements modeling rises with the
use of a DSL that uses specific concepts of the domain. In addition,
our proposal guides the code generation to the automatic program-
ming of the devices of the selected HA technology. In this way the
need for specific knowledge of each platform is avoided, as well as
the intervention of an expert in the technology.

2.2.2. Reuse of DSL models
The literature distinguishes between two general types of

reuse approaches (von Knethen et al., 2002): composition and
generation-based approaches. Composition-based approaches are
based on composing reusable assets. This type of approach is
typically applied for design or code reuse. Generation-based
approaches focus on instantiating reusable abstractions. Popular



Download	English	Version:

https://daneshyari.com/en/article/458743

Download	Persian	Version:

https://daneshyari.com/article/458743

Daneshyari.com

https://daneshyari.com/en/article/458743
https://daneshyari.com/article/458743
https://daneshyari.com/

