

journal of **Algebra**

Journal of Algebra 321 (2009) 3469-3493

www.elsevier.com/locate/jalgebra

Combinatorics in affine flag varieties

James Parkinson^a, Arun Ram^{b,c,*}, Christoph Schwer^d

^a Institut für Mathematische Strukturtheorie, Technische Universität Graz, Steyrergasse 30/III, A-8010 Graz, Austria
 ^b Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
 ^c Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA
 ^d Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany

Received 4 January 2008

Available online 27 May 2008

Communicated by Andrew Mathas and Jean Michel

Dedicated to Gus Lehrer on the occasion of his 60th birthday

Abstract

The Littelmann path model gives a realization of the crystals of integrable representations of symmetrizable Kac–Moody Lie algebras. Recent work of Gaussent and Littelmann [S. Gaussent, P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (1) (2005) 35–88] and others [A. Braverman, D. Gaitsgory, Crystals via the affine Grassmannian, Duke Math. J. 107 (3) (2001) 561–575; S. Gaussent, G. Rousseau, Kac–Moody groups, hovels and Littelmann's paths, preprint, arXiv: math.GR/0703639, 2007] has demonstrated a connection between this model and the geometry of the loop Grassmanian. The alcove walk model is a version of the path model which is intimately connected to the combinatorics of the affine Hecke algebra. In this paper we define a refined alcove walk model which encodes the points of the affine flag variety. We show that this combinatorial indexing naturally indexes the cells in generalized Mirković–Vilonen intersections.

© 2008 Elsevier Inc. All rights reserved.

Keywords: Loop Grassmannian; Path model; MV cycles

^{*} Corresponding author at: Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia.

E-mail addresses: parkinson@weyl.math.tu-graz.ac.at (J. Parkinson), a.ram@ms.unimelb.edu.au (A. Ram), cschwer@math.uni-koeln.de (C. Schwer).

1. Introduction

A *Chevalley group* is a group in which row reduction works. This means that it is a group with a special set of generators (the "elementary matrices") and relations which are generalizations of the usual row reduction operations. One way to efficiently encode these generators and relations is with a Kac–Moody Lie algebra $\mathfrak g$. From the data of the Kac–Moody Lie algebra and a choice of a commutative ring or field $\mathbb F$ the group $G(\mathbb F)$ is built by generators and relations following Chevalley–Steinberg–Tits.

Of particular interest is the case where \mathbb{F} is the field of fractions of \mathfrak{o} , the discrete valuation ring \mathfrak{o} is the ring of integers in \mathbb{F} , \mathfrak{p} is the unique maximal ideal in \mathfrak{o} and $k = \mathfrak{o}/\mathfrak{p}$ is the residue field. The favorite examples are

$$\begin{split} \mathbb{F} &= \mathbb{C}((t)), & \quad \mathfrak{o} &= \mathbb{C}[\![t]\!], & \quad k &= \mathbb{C}, \\ \mathbb{F} &= \mathbb{Q}_p, & \quad \mathfrak{o} &= \mathbb{Z}_p, & \quad k &= \mathbb{F}_p, \\ \mathbb{F} &= \mathbb{F}_q((t)), & \quad \mathfrak{o} &= \mathbb{F}_q[\![t]\!], & \quad k &= \mathbb{F}_q, \end{split}$$

where \mathbb{Q}_p is the field of p-adic numbers, \mathbb{Z}_p is the ring of p-adic integers, and \mathbb{F}_q is the finite field with q elements. For clarity of presentation we shall work in the first case where $\mathbb{F} = \mathbb{C}((t))$. The diagram

where $B(\mathbb{C})$ is the "Borel subgroup" of "upper triangular matrices" in $G(\mathbb{C})$. The *loop group* is $G = G(\mathbb{C}((t)))$, I is the standard *Iwahori subgroup* of G,

$$G(\mathbb{C})/B(\mathbb{C})$$
 is the flag variety, G/I is the affine flag variety, and G/K is the loop Grassmanian. (1.2)

The primary tool for the study of these varieties (ind-schemes) are the following "classical" double coset decompositions, see [St, Ch. 8] and [Mac1, §(2.6)].

Theorem 1.1. Let W be the Weyl group of $G(\mathbb{C})$, $\widetilde{W} = W \ltimes \mathfrak{h}_{\mathbb{Z}}$ the affine Weyl group, and U^- the subgroup of "unipotent lower triangular" matrices in $G(\mathbb{F})$ and $\mathfrak{h}_{\mathbb{Z}}^+$ the set of dominant elements of $\mathfrak{h}_{\mathbb{Z}}$. Then

$$\begin{array}{lll} \textit{Bruhat} & G = \bigsqcup_{w \in W} BwB, & K = \bigsqcup_{w \in W} IwI, \\ \textit{Iwahori} & G = \bigsqcup_{w \in \widetilde{W}} IwI, & G = \bigsqcup_{v \in \widetilde{W}} U^-vI, \\ \textit{Cartan} & G = \bigsqcup_{\lambda^\vee \in \mathfrak{h}_{\mathbb{Z}}^+} Kt_{\lambda^\vee}K, & G = \bigsqcup_{\mu^\vee \in \mathfrak{h}_{\mathbb{Z}}} U^-t_{\mu^\vee}K, & \textit{Iwasawa decomposition.} \end{array}$$

Download English Version:

https://daneshyari.com/en/article/4587477

Download Persian Version:

https://daneshyari.com/article/4587477

<u>Daneshyari.com</u>