

journal of **Algebra**

Journal of Algebra 319 (2008) 1809-1821

www.elsevier.com/locate/jalgebra

Symmetric subalgebras noncohomologous to zero in a complex semisimple Lie algebra and restrictions of symmetric invariants

Gang Han

Department of Mathematics, Zhejiang University, Hang Zhou 310027, China
Received 10 May 2007
Available online 21 December 2007
Communicated by Masaki Kashiwara

Abstract

Let (\mathfrak{g},θ) be a semisimple involutory Lie algebra and $(\mathfrak{g},\mathfrak{k})$ the corresponding symmetric pair. Let \mathfrak{h} be a fundamental Cartan subalgebra of (\mathfrak{g},θ) containing a Cartan subalgebra \mathfrak{t} of \mathfrak{k} . The semisimple involutory Lie algebras (\mathfrak{g},θ) with the symmetric subalgebra \mathfrak{k} noncohomologous to zero in \mathfrak{g} are completely classified by showing that \mathfrak{k} is noncohomologous to zero in \mathfrak{g} if and only if the $Spin\ \nu$ representation of (\mathfrak{g},θ) is primary. Based on this result we then determine the image of the restriction map $S(\mathfrak{h}^*)^{W(\mathfrak{g},\mathfrak{h})} \to S(\mathfrak{t}^*)^{W(\mathfrak{k},\mathfrak{t})}$, where $W(\mathfrak{g},\mathfrak{h})$ and $W(\mathfrak{k},\mathfrak{t})$ are the respective Weyl groups.

Keywords: Involutory semisimple Lie algebra; Symmetric subalgebra; Noncohomologous to zero; *Spin v* representation; Symmetric invariants

1. Introduction

1.1. Let \mathfrak{g} be a finite-dimensional reductive complex Lie algebra and \mathfrak{k} be a reductive Lie subalgebra of \mathfrak{g} . Then $(\mathfrak{g},\mathfrak{k})$ is called a reductive Lie subalgebra pair. Let $H(\mathfrak{g})$ and $H(\mathfrak{k})$ be the respective cohomology algebras of \mathfrak{g} and \mathfrak{k} . The reductive subalgebra \mathfrak{k} is called noncohomologous to zero in \mathfrak{g} (or simply \mathfrak{k} is n.c.z. in \mathfrak{g}) if the canonical map $H(\mathfrak{g}) \to H(\mathfrak{k})$ is surjective. Let $H(\mathfrak{g}/\mathfrak{k})$ be the cohomology algebra of the pair $(\mathfrak{g},\mathfrak{k})$ defined as usual. For example see Chapter 10 of [2] or Section 2.2 of this paper for the definition of $H(\mathfrak{g}/\mathfrak{k})$. Let $H_0(\mathfrak{g}/\mathfrak{k}) \subseteq H(\mathfrak{g}/\mathfrak{k})$ be a char-

E-mail address: mathhgg@zju.edu.cn.

acteristic factor and P be the Samelson subspace of $(\mathfrak{g},\mathfrak{k})$. Then $H(\mathfrak{g}/\mathfrak{k}) \cong H_0(\mathfrak{g}/\mathfrak{k}) \otimes \wedge P$. If \mathfrak{k} is noncohomologous to zero in \mathfrak{g} then $H_0(\mathfrak{g}/\mathfrak{k}) \cong \mathbb{C}$, $H(\mathfrak{g}/\mathfrak{k}) \cong \wedge P$ and $H(\mathfrak{g}) \cong H(\mathfrak{g}/\mathfrak{k}) \otimes H(\mathfrak{k})$. So it will be nice if one can classify reductive pairs $(\mathfrak{g},\mathfrak{k})$ with \mathfrak{k} noncohomologous to zero in \mathfrak{g} . We will solve this problem in the case that \mathfrak{k} is a symmetric subalgebra in \mathfrak{g} , that is, \mathfrak{k} is the fixed point of some involutory automorphism of \mathfrak{g} . If θ is an involutory automorphism of \mathfrak{g} , then the pair (\mathfrak{g},θ) is called an involutory Lie algebra.

Assume that (\mathfrak{g}, θ) is a semisimple involutory Lie algebra (i.e., \mathfrak{g} is semisimple). Let \mathfrak{k} and \mathfrak{p} be respectively the 1 and -1 eigenspace of θ . Then $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is called the Cartan decomposition of (\mathfrak{g}, θ) and $(\mathfrak{g}, \mathfrak{k})$ is called the symmetric pair of (\mathfrak{g}, θ) . Let

$$\mathfrak{h} = \mathfrak{t} \oplus \mathfrak{a} \tag{1.1}$$

be a fundamental Cartan subalgebra of (\mathfrak{g},θ) , where \mathfrak{t} is a Cartan subalgebra of \mathfrak{k} and \mathfrak{a} is the centralizer of \mathfrak{t} in \mathfrak{p} . The projection $\mathfrak{h} \to \mathfrak{t}$ defined by (1.1) induces an inclusion $\mathfrak{t}^* \to \mathfrak{h}^*$, so we will always regard \mathfrak{t}^* as a subspace of \mathfrak{h}^* . Let $\Delta(\mathfrak{g},\mathfrak{h})$ (respectively $\Delta(\mathfrak{g},\mathfrak{t}), \Delta(\mathfrak{k},\mathfrak{t})$) be the root system of \mathfrak{g} with respect to \mathfrak{h} (respectively of \mathfrak{g} with respect to \mathfrak{t}). Let W be the Weyl group of $\Delta(\mathfrak{g},\mathfrak{h})$ acting on \mathfrak{h}^* . Let $W(\mathfrak{g},\mathfrak{t})$ and $W(\mathfrak{k},\mathfrak{t})$ be respectively the Weyl groups of $\Delta(\mathfrak{g},\mathfrak{t})$ and $\Delta(\mathfrak{k},\mathfrak{t})$ acting on \mathfrak{t}^* . Then $W(\mathfrak{k},\mathfrak{t})$ is a subgroup of $W(\mathfrak{g},\mathfrak{t})$. Let W_{θ} be the subgroup of W consisting of elements of W commuting with θ . One knows in [4] that $W(\mathfrak{g},\mathfrak{t})$ and W_{θ} are isomorphic.

Let $Spin v : \mathfrak{k} \to End S$ be the composition of the isotropy representation $v : \mathfrak{k} \to \mathfrak{so}(\mathfrak{p})$ with the spin representation $Spin : \mathfrak{so}(\mathfrak{p}) \to End S$. The map Spin v is a representation of \mathfrak{k} on S. The following theorem is the first main result in this paper and is proved in Theorem 3.1 and Proposition 3.3.

Theorem 1.1. Let (\mathfrak{g},θ) be a semisimple involutory Lie algebra and $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ be the Cartan decomposition. Let $\mathfrak{h}=\mathfrak{t}\oplus\mathfrak{g}$ be a fundamental Cartan subalgebra of \mathfrak{g} , where \mathfrak{t} is a Cartan subalgebra of \mathfrak{k} and \mathfrak{g} is the centralizer of \mathfrak{t} in \mathfrak{p} . Let $l=\dim\mathfrak{g}$. Then $\dim H(\mathfrak{g}/\mathfrak{k})=2^l|W(\mathfrak{g},\mathfrak{t})/W(\mathfrak{k},\mathfrak{t})|$ and $\dim H_0(\mathfrak{g}/\mathfrak{k})=|W(\mathfrak{g},\mathfrak{t})/W(\mathfrak{k},\mathfrak{t})|$. In particular, the symmetric subalgebra \mathfrak{k} is noncohomologous to zero in \mathfrak{g} if and only if $W(\mathfrak{g},\mathfrak{t})=W(\mathfrak{k},\mathfrak{t})$, if and only if the Spin v representation of (\mathfrak{g},θ) is primary.

Let $(\mathfrak{g}, \theta) = (\mathfrak{b}, I) \oplus (\mathfrak{g}', \theta')$ be the decomposition of (\mathfrak{g}, θ) into a trivial semisimple involutory Lie algebra (\mathfrak{b}, I) and a reduced semisimple involutory Lie algebra (\mathfrak{g}', θ') . Let $(\mathfrak{g}', \theta') = \bigoplus_{i=1}^n (\mathfrak{g}_i, \theta_i)$ be the decomposition of (\mathfrak{g}', θ') into reduced and irreducible semisimple involutory Lie algebras. Then the symmetric subalgebra \mathfrak{k} is noncohomologous to zero in \mathfrak{g} if and only if the symmetric subalgebra \mathfrak{k}_i is noncohomologous to zero in \mathfrak{g}_i for all i.

Note that the symmetric pairs of reduced and irreducible semisimple involutory Lie algebras with primary Spin v representations have been classified in Theorem 4.13 of [3]. So the theorem means that semisimple involutory Lie algebras (\mathfrak{g}, θ) with the symmetric subalgebra \mathfrak{k} n.c.z. in \mathfrak{g} are completely classified.

If (\mathfrak{g},θ) is a reductive involutory Lie algebra, then $(\mathfrak{g},\theta)=(\mathfrak{g}_0,\theta_0)\oplus(\tilde{\mathfrak{g}},\tilde{\theta})$ with \mathfrak{g}_0 the center of \mathfrak{g} and $\tilde{\mathfrak{g}}=[\mathfrak{g},\mathfrak{g}]$. Let \mathfrak{k} and $\tilde{\mathfrak{k}}$ be respectively the θ -invariants of \mathfrak{g} and $\tilde{\theta}$ -invariants of $\tilde{\mathfrak{g}}$. By Lemma 3.2 one knows that \mathfrak{k} is n.c.z. in \mathfrak{g} if and only if $\tilde{\mathfrak{k}}$ is n.c.z. in $\tilde{\mathfrak{g}}$. Thus, given a reductive involutory Lie algebra (\mathfrak{g},θ) , the symmetric subalgebra \mathfrak{k} is n.c.z. in \mathfrak{g} if and only if (\mathfrak{g},θ) can be written as the direct sum of an abelian involutory Lie algebra and a semisimple involutory Lie algebra $(\tilde{\mathfrak{g}},\tilde{\theta})$ with the symmetric subalgebra $\tilde{\mathfrak{k}}$ n.c.z. in $\tilde{\mathfrak{g}}$.

Download English Version:

https://daneshyari.com/en/article/4587867

Download Persian Version:

https://daneshyari.com/article/4587867

<u>Daneshyari.com</u>