
The Journal of Systems and Software 84 (2011) 603–619

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

XML-manipulating test case prioritization for XML-manipulating services�

Lijun Meia, W.K. Chanb,∗, T.H. Tsea, Robert G. Merkel c

a Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong
b Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong
c Faculty of Information Technology, Monash University, Clayton, Victoria, Australia

a r t i c l e i n f o

Article history:
Received 19 January 2010
Received in revised form 13 October 2010
Accepted 18 November 2010
Available online 3 December 2010

Keywords:
Test case prioritization
Black-box regression testing
WS-BPEL
Service testing
Service-oriented testing

a b s t r a c t

A web service may evolve autonomously, making peer web services in the same service composition
uncertain as to whether the evolved behaviors are compatible with its original collaborative agreement.
Although peer services may wish to conduct regression testing to verify the agreed collaboration, the
source code of the former service may be inaccessible to them. Owing to the black-box nature of peer
services, traditional code-based approaches to regression testing are inapplicable. In addition, traditional
techniques assume that a regression test suite for verifying a web service is available. The location to store
a regression test suite is also a problem. On the other hand, we note that the rich interface specifications
of a web service provide peer services with a means to formulate black-box testing strategies. In this
paper, we provide a strategy for black-box service-oriented testing. We also formulate new test case
prioritization strategies using tags embedded in XML messages to reorder regression test cases, and
reveal how the test cases use the interface specifications of web services. We experimentally evaluate the
effectiveness of these black-box strategies in revealing regression faults in modified WS-BPEL programs.
The results show that the new techniques can have a high chance of outperforming random ordering.
Moreover, our experiment shows that prioritizing test cases based on WSDL tag coverage can achieve a
smaller variance than that based on the number of tags in XML messages in regression test cases, even
though their overall fault detection rates are similar.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The testing and analysis of web services have posed new foun-
dational and practical challenges, such as the non-observability
problem (Canfora and Di Penta, 2006; Mei et al., 2009d), the exten-
sive presence of non-executable artifacts within and among web
services (Mei et al., 2008a, 2009b), safeguards against malicious
messages from external parties (Xu et al., 2005; Martin et al., 2007),
ultra-late binding (Bartolini et al., 2008), and cross-organizational
issues (Ye et al., 2009). Researchers have proposed diverse tech-
niques to address the test case selection problem (Martin et al.,
2007), the test adequacy problem (Mei et al., 2008b, 2009b), the
test oracle problem (Tsai et al., 2005a; Chan et al., 2007), and the
test case prioritization problem (Hou et al., 2008; Mei et al., 2009c,
2009d).

� This research is supported in part by the General Research Fund of the Research-
Grant Council of Hong Kong (project no. 717308), a strategicresearch grant of City
University of Hong Kong (project no. 7002464), and a discoverygrant of the Aus-
tralian Research Council (project no. DP0984760). A preliminaryversion of this paper
was presented in QSIC 2009 (Mei et al., 2009c).

∗ Corresponding author. Tel.: +852 2788 9684.
E-mail addresses: ljmei@cs.hku.hk (L. Mei), wkchan@cs.cityu.edu.hk (W.K. Chan),

thtse@cs.hku.hk (T.H. Tse), robert.merkel@benambra.org (R.G. Merkel).

Regression testing is the de facto activity to address the testing
problems caused by software evolution (Onoma et al., 1998). It
aims to detect software faults by retesting modified software
versions. However, many existing regression testing techniques
(such as Harrold et al., 1993; Kim and Porter, 2002; Mei et al.,
2009c; Rothermel et al. 2001) assume that the source code is
available for monitoring (Mei et al., 2009d), and use the coverage
information of executable artifacts (such as statement coverage
achieved by individual test cases) to conduct regression testing.
Nonetheless, the coverage information on an external service may
not be visible to the service composition that utilizes this service.
Moreover, even though a technique may insert probing services
to collect and compute coverage (Mei et al., 2008b, Section 5.3;
Bartolini et al., 2009), the effect depends on whether the service
being sampled is willing to provide such information accurately.
Since such code coverage information cannot be assumed to be
available, it is vital to consider alternative sources of information
to facilitate effective regression testing.

Many web services (or services for short) use the Web Ser-
vices Description Language (WSDL) (W3C, 2007a) to specify their
functional interfaces and message parameters. They also use XML
documents to represent the messages. To quantify the transfer of
type-safe XML messages with external partners, the WSDL docu-
ments of a service further embed the types of such messages (Mei
et al., 2008b).

0164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.11.905

dx.doi.org/10.1016/j.jss.2010.11.905
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:ljmei@cs.hku.hk
mailto:wkchan@cs.cityu.edu.hk
mailto:thtse@cs.hku.hk
mailto:robert.merkel@benambra.org
dx.doi.org/10.1016/j.jss.2010.11.905


604 L. Mei et al. / The Journal of Systems and Software 84 (2011) 603–619

WSDL documents are rich in interface information. Moreover,
such documents are often observable by external services. Despite
the richness of such documents, to the best of our knowledge, the
use of WSDL documents to guide regression testing without assum-
ing code availability has not been proposed or evaluated in the
literature.

In general, different services developed by the same or mul-
tiple development teams may be modified independently of one
another, and the evolution of services may not be fully known by
every other service. With respect to a service maintained by a devel-
opment team, a service maintained by another development team
can be regarded as a service collaborator or a service consumer of
the former service.

Let us consider a scenario that a service A (as a service consumer)
would like to pair up with a service B, and yet the latter service
may evolve over time or contain faults that lead to failures in some
executions of their service collaborations. The service consumer A
may want to execute some tests on the functions provided by B to
ensure that A’s service composition has not been adversely affected
(at least from A’s perspective). For instance, a company may want
to make use of the electronic payment gateway provided by a bank
to conduct payment transactions with the bank. Under this sce-
nario, the internal service of the company is the service consumer
of the payment gateway service of the bank. To the benefit of the
company, the development team of the internal service would like
to test its service collaboration with the payment gateway service
comprehensively. In terms of testing, it typically means that many
test cases will be used, which is costly to execute.

Furthermore, the program code of B (such as the payment
gateway service of the bank in the above scenario) is gener-
ally inaccessible to A (the internal service of the company in the
above scenario). Therefore, even though A may be able to discover
and invoke a test suite to conduct regression testing on B, the
above scenario makes impossible the test execution schedule that
applies existing code-based regression testing techniques (Leung
and White, 1989; Harrold et al., 1993) in general, and test case
prioritization techniques (Rothermel et al., 2001) in particular, to
improve the fault detection rate and achieve other goals.

The WSDL documents of services are accessible among peer
services. It is well known, however, that black-box testing is not
adequate and must be supplemented by white-box testing (Chen
et al., 1998). How well does the richness of information embedded
in typical WSDL documents help alleviate this deficiency in service-
oriented testing? Is it effective to use the black-box information in
WSDL documents to guide regression testing to overcome the diffi-
culties in testing services with hidden implementation details such as
source code? These questions motivate the study presented in this
paper.

We observe that, in a regression test suite for service testing,
existing test cases may record the associated XML messages that
have been accepted or returned by a (previous) version of the target
service. Because the associated WSDL documents capture the tar-
get service’s functions and types of XML message, the tags defined
in such documents and encoded in individual test cases can be fil-
tered through all the WSDL documents. Moreover, we observe that
a WSDL tag may occur several times in the same or different XML
messages within a test case. For instance, to collect room booking
information, multiple instances of room information often appear
in the XML messages.

Following up on these observations, we propose two aspects
in formulating test case prioritization techniques. The first aspect
to make use of the tags in XML messages in relation to the WSDL
documents of the service under test. We propose the use of WSDL
tag coverage statistics and WSDL tag occurrence statistics. Based
on these two statistics, we can cluster the test cases and iteratively
select them from the sequence of clusters. The second aspect is

to define the order of the sequence of clusters. There are many
ways to do so, including simple orderings such as randomization,
sorting, as well as more advanced sampling strategies. To facil-
itate further comparison of future research, we choose a simple
strategy (namely, sorting according to the count statistics) so that
researchers can easily compare it with their own strategies in the
context of service regression testing.

Following these directions, we formulate four prioritization
techniques as proofs of the concepts. We further conduct an empiri-
cal study on a suite (from Mei et al., 2009d) of WS-BPEL applications
(OASIS, 2007) using both adequate test suites and random test
suites to verify the effectiveness of our techniques. The results show
that our techniques can have high chances of outperforming ran-
dom ordering. Moreover, our experiment shows that prioritizing
test cases based on WSDL tag coverage by regression test cases can
achieve a smaller variance than that based on the number of WSDL
tag occurrences resulting from regression test cases, even though
their overall fault detection rates are similar. Our experiment also
shows that the fault detection rates of our techniques on the sub-
ject applications can be less effective than white-box techniques,
but this finding is not statistically significant.

Techniques for the construction of effective regression test
suites are not within the scope of this paper. We appreciate that
invalid test cases can be costly because they still require the execu-
tion of the service under test despite the lack of fruitful results. We
assume that all the test cases in a given regression test suite are
valid. Invalid regression test cases can be removed, for instance,
using the information in the fault handler messages returned by
the service, or using the WSDL documents of the services to validate
the format of the test cases in advance. Once a test case has been
identified to be invalid, it can be permanently removed from the
regression test suite for that service. Thus, during the next regres-
sion testing of the service (without knowing in advance whether the
service has evolved), the test case does not need to be considered
in test case prioritization.

Existing techniques, such as Rothermel et al. (2001) and Mei
et al. (2009d), assume that information on regression test cases is
already available. In service-oriented applications, however, since
the coordination program may use both in-house and external ser-
vices to implement the functionality, the test suite for evaluating
a service composition needs to be determined dynamically before
each round of testing. We will, therefore, discuss how to model the
entire testing procedure in this paper.

The main contribution of this paper with its preliminary version
(Mei et al., 2009c) is threefold: (i) We propose a new set of black-box
techniques to prioritize test cases for regression testing of services
having observable and rich content interface. It eases the problem
of autonomous evolution of individual services in service composi-
tions, so that peer services can gain confidence on the service under
test with lower cost in regression testing. Our technique is partic-
ularly useful when the source code of the service under test is not
available or is too costly to obtain, (ii) We address the challenges in
performing black-box regression testing for service-oriented appli-
cations, and develop a strategy to facilitate such testing, (iii) We
report the first controlled experimental evaluation of the effective-
ness of black-box regression testing in the context of service testing.
Our empirical results indicate that the use of the information cap-
tured in WSDL documents (paired with regression test suites) is a
promising way to lower the cost of quality assurance of workflow
services. Our empirical results also indicate that the different parti-
tions generated according to the different perspectives (white-box
coverage or black-box coverage information) have different effects
on the fault detection rates for different kinds of faults.

The rest of the paper is organized as follows: Section 2
introduces the foundations of test case prioritization. Section 3
introduces the preliminaries of our approach through a running



Download English Version:

https://daneshyari.com/en/article/458817

Download Persian Version:

https://daneshyari.com/article/458817

Daneshyari.com

https://daneshyari.com/en/article/458817
https://daneshyari.com/article/458817
https://daneshyari.com

