The Journal of Systems and Software 84 (2011) 655-668

Contents lists available at ScienceDirect

St

L

The Journal of Systems and Software

Iy
AT

journal homepage: www.elsevier.com/locate/jss

Bringing white-box testing to Service Oriented Architectures through a Service
Oriented Approach

Cesare Bartolini?, Antonia Bertolino®*, Sebastian ElbaumP®, Eda Marchetti?

3 ISTI - CNR, Via Moruzzi 1, 56124 Pisa, Italy
b Computer Science and Engineering Department, University of Nebraska, Lincoln, USA

ARTICLE INFO ABSTRACT

Article history:

Received 20 January 2010

Received in revised form 22 July 2010
Accepted 18 October 2010

Available online 18 November 2010

The attractive feature of Service Oriented Architecture (SOA) is that pieces of software conceived and
developed by independent organizations can be dynamically composed to provide richer functionality.
The same reasons that enable flexible compositions, however, also prevent the application of some tra-
ditional testing approaches, making SOA validation challenging and costly. Web services usually expose
just an interface, enough to invoke them and develop some general (black-box) tests, but insufficient for
a tester to develop an adequate understanding of the integration quality between the application and the
independent web services. To address this lack we propose an approach that makes web services more
transparent to testers through the addition of an intermediary service that provides coverage informa-
tion. The approach, named Service Oriented Coverage Testing (SOCT), provides testers with feedback
about how much a service is exercised by their tests without revealing the service internals. In SOCT,
testing feedback is offered itself as a service, thus preserving SOA founding principles of loose coupling
and implementation neutrality. In this paper we motivate and define the SOCT approach, and implement
an instance of it. We also perform a study to asses SOCT feasibility and provide a preliminary evaluation

Keywords:

White-box testing

Coverage adequacy criteria
Testing web services
Service-Oriented Architecture

of its viability and value.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Usage of web services has increased dramatically in the last
years (Gartner and Forrester, 2003). Different definitions can be
found in the literature of what a web service is; the World Wide
Web Consortium (W3C) qualifies a web service as (W3C Working
Group, 2004) a software system designed to support interoperable
machine-to-machine interaction over a network and having an inter-
face in a machine-processable format. Such interface descriptions
can be published and discovered, thus making it cost-effective for
companies to integrate their own services with those developed
and managed by third parties (Schroth et al., 2008). Of course web
services are not necessarily used across organizations, on the con-
trary they are also widely used “in-house” and within corporate
environments. However, the former is the situation we consider
in this paper, because, as we explain below, this exposes the most
difficult challenges from the tester’s viewpoint.

An emerging paradigm for organizing and utilizing distributed
capabilities that may be under the control of different organizations
is the Service Oriented Architecture (SOA) (OASIS, 2006), whereas
the sequence and conditions in which one web service invokes

* Corresponding author.
E-mail address: antonia.bertolino@isti.cnr.it (A. Bertolino).

0164-1212/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j,js5.2010.10.024

other web services in order to achieve its goals is referred to as
an orchestration (W3C Working Group, 2004).

Failures in web service orchestrations, unfortunately, are com-
mon and their impact becomes more obvious and detrimental as
their popularity and interdependencies increase. For example, a
recent failure in Amazon’s storage web service affected many com-
panies relying on it (Amazon Discussion Forum).

For a service orchestrator, building effective tests that can detect
failures in the interaction among the composed services is chal-
lenging for two reasons. First, even if best practices (Torry Harris
Business Solutions) are followed by the developer to test an indi-
vidual service to ensure its quality, nothing guarantees that it will
then operate smoothly as part of a dynamic distributed system
made of multiple orchestrated but autonomous services. Second,
the orchestrator of independently developed services can usually
only access their interface to derive test cases and determine the
extent of the testing activity. This limited visibility means that the
orchestrator has to rely heavily upon an interface whose docu-
mentation is often limited and possibly inconsistent with the true
system behavior, especially with services that undergo frequent
updates (Fisher et al., 2007a).

Researchers have developed several approaches to address
these challenges. In particular, much work has focused on test
case generation from improved service interfaces (i.e., more precise
behavioral specifications) (PLASTIC Validation Framework; Sinha


dx.doi.org/10.1016/j.jss.2010.10.024
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:antonia.bertolino@isti.cnr.it
dx.doi.org/10.1016/j.jss.2010.10.024

656 C. Bartolini et al. / The Journal of Systems and Software 84 (2011) 655-668

and Paradkar, 2006; Xu et al., 2005), on the detection of incon-
sistencies between a service interface description and its behavior
(Fisher et al., 2007b), on defining adequacy criteria based on the
web services interactions (L. Li et al., 2008), on procedures to build
scaffolding for test services in more controlled settings (Sneed
and Huang, 2007), and on using the availability of multiple ser-
vices as oracles (Tsai et al., 2005). One trait shared by existing test
approaches is the treatment of web services as black boxes (Canfora
and Di Penta, 2009), focusing on the external behavior but ignoring
the internal structure of the services included in the orchestration.
This trait follows the very nature of web services, which are meant
to be implementation neutral. From a testing perspective, though,
this is a pity. White-box approaches are in fact a well-known valu-
able complement to black-box ones (Pezzé and Young, 2007), as
coverage information can provide an indication of the thorough-
ness of the executed test cases, and can help maintain an effective
and efficient test suite.

To address this limitation we have conceived an approach
through which services can be made more transparent to an exter-
nal tester while maintaining the flexibility, dynamism and loose
coupling of SOAs. Our approach enables a service orchestrator
to access test coverage measures (or their byproducts) on the
third-party services without gaining access to the code of those ser-
vices. We refer to this enhancement as “whitening” of SOA testing
(Bartolini et al., 2009) to reflect a move towards whitebox testing
in terms of providing increased feedback about test executions on
a service, yet the service provider remains in control of how much
of the internal system structure is revealed.

Whitening is achieved through the use of dedicated services
built for collecting coverage data; these services compute the cov-
erage of the services under test, on behalf of the orchestrator. The
loose coupling of the web service paradigm is not lost between the
orchestrator and the developer of the provided service because the
orchestrator is still unable to see anything of the service beyond
the interface. In particular, the orchestrator is completely unaware
of any implementation detail, and simply obtains some cumulative
measures (percentages) which only reveal how much of the ser-
vice the executed tests are actually using. Loss of loose coupling
happens, at most, between the provided service and the cover-
age collecting service (of which it is reasonable to assume it is
a trustworthy third party), but, even so, which and how much
information is disclosed is under the control of the provider of
the service under test. The approach thus blends naturally into
the SOA paradigm and is called Service Oriented Coverage Testing
(SOCT).

The added transparency from test whitening is clearly far from
a “complete” white-box testing; coverage only adds a slight bit of
information. However, this improvement in transparency increases
testability, letting the service orchestrator gain additional feedback
about how a service orchestration is exercised during validation.
This feedback can then be used by orchestrators in many ways:
to determine whether a coverage adequacy criterion that includes
the third-party service structure has been reached; to identify tests
that do not contribute as much and can be removed from a suite; or,
to drive regression testing to detect possible updates in the imple-
mentation of a third-party service that might affect the behavior of
their application. On the other end, third-party service providers
may be enticed to provide such an extended testing interface as a
way to implement continuous quality assurance checks (perhaps
in association with the orchestrator), or may be required to do so
as part of a service quality agreement.

Whitening SOA testing requires the design of an infrastructure
that fits naturally in the service-oriented model by providing test
coverage information itself as a service accessible only through
a service interface. The infrastructure supporting our approach
achieves that goal by requiring:

1. for the developer of a provided service, to instrument the code to
enable the monitoring of the execution of target program enti-
ties, and make the relative usage information publicly available;

2. for the provider of the coverage collecting service, to track test
execution results; and

3. for the service orchestrator testing the integrated application, to
request testing information through a standardized published
web service testing interface.

From a broader perspective, such infrastructure relies on laying
down a governance framework to realize inter-organization test-
ing at the orchestration level (Bertolino and Polini, 2009). Such
framework encompasses the set of rules, policies, practices and
responsibilities by which a complex SOA system is controlled and
administered. In this paper we focus on the governance issues more
closely associated with the integration testing of the orchestrated
application. Of course, governance per se does not prevent mali-
cious or irresponsible behavior on the service provider’s part. The
SOCT approach works as far as all involved stakeholders cooper-
ate diligently (which is not different from any other collaborative
engineering endeavor). The service provider, in particular, should
ensure that the coverage information sent to the collecting service
are precise, complete, and timely.

The very idea of SOCT has been proposed for the first time in
Bartolini et al. (2008a), and elaborated in a conceptual approach
in Bartolini et al. (2009). This paper extends on the latter work
by revising the approach’s associated definitions together with its
potential applications, providing more detailed explanations of the
interactions among the stakeholders, describing a full implemented
instance of it, and performing a completely new assessment of its
usefulness and performance through a case study. More precisely,
in the next section we overview foundational related work and
then, in Section 3, we present the problem domain, its motivation
and main challenges. In Section 4 we define SOCT concepts and
a realization scenario. In particular, the main components of the
developed instance are described in Section 4.3. The case study is
described in Section 5. Conclusions are drawn in Section 6.

2. Related work

In this section we overview the topic of web service testing,
which is currently actively researched, as recently surveyed by
Canfora and Di Penta (2009). As mentioned earlier, we focus here
on SOA testing at the integration level; in particular we address
the need of testing a composition of services that might have
been developed by independent organizations. Some of the issues
encountered in testing a composition of services are investigated by
Bucchiarone et al. (2007), distinguishing between testing of orches-
trations and of choreographies.

Today, the standard for service orchestration is the Business
Process Execution Language (BPEL) (OASIS WSBPEL Technical
Committee, 2007). Several authors have leveraged the BPEL rep-
resentation for SOA testing. Although different approaches have
been devised, the essential common basis in BPEL-based testing is
that variants of a control flow diagram are abstracted and paths
over this diagram are used to guide test generation or to assess
BPEL coverage (see, e.g., Yan et al., 2006; Yuan et al., 2006). Others
(including some of the authors of this paper) have also proposed
to exploit BPEL data-flow information (Mei et al., 2008; Bartolini
et al., 2008b).

So far, all existing approaches to SOA testing validate the ser-
vices invoked in a composition as black-boxes. Indeed, the shared
view is that for SOA integrators “a service is just an interface, and
this hinders the use of traditional white-box coverage approaches”
(Canfora and Di Penta, 2009). To the best of our knowledge, by



Download English Version:

https://daneshyari.com/en/article/458820

Download Persian Version:

https://daneshyari.com/article/458820

Daneshyari.com


https://daneshyari.com/en/article/458820
https://daneshyari.com/article/458820
https://daneshyari.com

