
The Journal of Systems and Software 83 (2010) 2083–2097

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

CLPL: Providing software infrastructure for the systematic and effective
construction of complex collaborative learning systems

Santi Caballéa,∗, Fatos Xhafab,1

a Dept. of Computer Science, Multimedia and Telecommunication, Open University of Catalonia, Rambla Poblenou, 156, 08018 Barcelona, Spain
b Dept. of Languages and Informatics Systems, Technical University of Catalonia, Campus Nord, Ed. Omega, C/Jordi Girona 1-3, 08034 Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 25 November 2009
Received in revised form 3 June 2010
Accepted 3 June 2010
Available online 16 June 2010

Keywords:
Software architecture and design
Software engineering methods
Software reuse
Component-based software engineering
Model-driven engineering
Service orientation
SOA
Computer-supported collaborative learning
E-learning
Software and systems education

a b s t r a c t

Over the last decade, e-Learning and in particular Computer-Supported Collaborative Learning (CSCL)
needs have been evolving accordingly with more and more demanding pedagogical and technological
requirements. As a result, high customization and flexibility are a must in this context, meaning that col-
laborative learning practices need to be continuously adapted, adjusted, and personalized to each specific
target learning group. These very demanding needs of the CSCL domain represent a great challenge for
the research community on software development to satisfy.

This contribution presents and evaluates a previous research effort in the form of a generic software
infrastructure called Collaborative Learning Purpose Library (CLPL) with the aim of meeting the current
and demanding needs found in the CSCL domain. To this end, we experiment with the CLPL in order to
offer an advanced reuse-based service-oriented software engineering methodology for developing CSCL
applications in an effective and timely fashion. A validation process is provided by reporting on the use
of the CLPL platform as the primary resource for the Master’s thesis courses at the Open University of
Catalonia when developing complex software applications in the CSCL domain.

The ultimate aim of the whole research is to yield effective CSCL software systems capable of supporting
and enhancing the current on-line collaborative learning practices.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Over the last years, e-learning and in particular CSCL needs
have been evolving accordingly with more and more demanding
pedagogical and technological requirements. Current educational
organizations’ needs involve extending and moving to highly
customized learning and teaching forms in timely fashion, each
incorporating its own pedagogical approach, each targeting a spe-
cific learning goal, and each incorporating its specific resources.
Moreover, organizations’ demands include a cost-effective inte-
gration of legacy and separated learning systems, from different
institutions, departments and courses, which are implemented
in different languages, supported by heterogeneous platforms
and distributed everywhere, to name some of them (Ateveh and
Lockemann, 2006).

As a result, modern CSCL environments no longer depend on
homogeneous groups, static content and resources, and single
pedagogies, but high customization and flexibility are a must in
this context, meaning that collaborative learning practices need

∗ Corresponding author. Tel.: +34 93 3263439; fax: +34 93 3568822.
E-mail addresses: scaballe@uoc.edu (S. Caballé), fatos@lsi.upc.edu (F. Xhafa).

1 Tel.: +34 93 4137880; fax: +34 93 4137833.

to be continuously adapted, adjusted, and personalized to each
specific target learning group. These very demanding needs repre-
sent a great challenge for the CSCL research community to satisfy.
Therefore, a generic, robust, flexible, interoperable, reusable com-
putational model that meets the fundamental functional needs
shared by most of collaborative learning experiences is largely
expected by the research community and industry (Czarnecki and
Eisenecker, 2000). Indeed, CSCL applications are extensively used
by all forms of higher education and especially in online distance
education where open universities have a central role and use CSCL
tools massively in all their formation cycles.

Due to this extensive use, CSCL becomes very attractive for
domain software developers who have recently provided a number
of architecture solutions with the aim of reusing the large number
of common requirements shared by e-learning and CSCL applica-
tions (Pahl, 2007). Common needs in CSCL include support for three
essential aspects of collaboration, namely coordination, collabo-
ration and communication; with communication being the base
for reaching coordination and collaboration in synchronous (i.e.,
cooperation at the same time) or asynchronous (i.e., cooperation
at different times) collaboration modes (Roseman and Greenberg,
1996). In addition, the representation and analysis of group learn-
ing activity interaction forms one of the paradigmatic principles
of the CSCL domain (Dillenbourg, 1999a) and should form part of

0164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.06.013

dx.doi.org/10.1016/j.jss.2010.06.013
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:scaballe@uoc.edu
mailto:fatos@lsi.upc.edu
dx.doi.org/10.1016/j.jss.2010.06.013


2084 S. Caballé, F. Xhafa / The Journal of Systems and Software 83 (2010) 2083–2097

the very rationale of all CSCL applications (Martínez et al., 2003).
Finally, in order to improve collaboration in a group it is essen-
tial to provide measures and rules to resolve authentication and
authorization issues and so protect the system from intentional or
accidental ill use as well as to perform all the system control and
maintenance for the correct administration of the system.

Generic platforms, frameworks and components are normally
developed for the construction of complex software systems
through software reuse techniques, such as generic programming,
domain-based analysis, feature modeling, service-oriented archi-
tecture, and so on (Czarnecki and Eisenecker, 2000; Bacelo Blois
and Becker, 2002; Gomaa, 2005). Indeed, in the context of generic
architectures and platforms, software reuse is by far one of the main
concerns in the software industry and it is increasingly recognized
its strategic importance in terms of productivity, quality and cost
(Czarneki, 2005).

However, despite the advance in software reuse, reuse capac-
ity is still in an incipient status, mainly due to the short in scope of
the reuse techniques such as classes, components, and frameworks,
also so-called “reuse in the small”. There is, therefore, a need for
increasing the level of reuse by extending the scope and, as a con-
sequence, the impact on the software development, also so called
“reuse in the large” (Ateveh and Lockemann, 2006). This is chiefly
fulfilled by extracting the commonality and variability features of
systems given a specific, wide domain and then reusing them for
the construction of single systems in the same domain (Gomaa,
2005). Thus, neither longer is necessary to “reinvent the wheel”
nor to develop a new system from scratch. This way, organizations
can consolidate and adapt their existing key software assets to meet
the ever changing requirements and needs. These approaches have
been successfully applied to different domains thus providing cost-
effective applications of increased quality in timely fashion. The
rapid change and evolution of requirements in the CSCL domain
raises new challenges to software developers, who in turn demands
more powerful reuse-based software techniques that provide more
flexible, adaptable, modular, and maintainable software.

Therefore, leveraging the latest software reuse principles, a
generic service-oriented component-based computational model
in the collaborative learning context is intended to form the very
rationale of complex CSCL environments in a wide range of learning
situations and pedagogical goals. As a result, domain developers
can derive specific CSCL applications by systematically adapting
and tailoring this reusable computational model for the construc-
tion of effective, affordable and timely newly CSCL tools, which
are modular, flexible, interoperable and maintainable, and a fast
adaptation of existing applications to newly learning and teaching
requirements (Caballé, 2008a).

Based on these principles, in a previous work (Caballé et
al., 2007) we proposed an innovative approach in the form
of a software infrastructure for collaborative learning with the
aim of meeting the current and demanding needs found in the
CSCL domain. In this current work, we evaluate this software
infrastructure as an advanced reuse-based software engineering
methodology for developing CSCL applications in an effective and
timely fashion. The validation process of the effects of this approach
is provided by the online software development courses found in
the real context of the Open University of Catalonia.

The development of the resulting ideas of this research repre-
sents an attractive but quite laborious challenge that will yield CSCL
systems capable of providing more effective answers on how to
improve and enhance the online collaborative learning experience
as well as to achieve a more effective collaboration (McGrath, 1991;
Sfard, 1998; Soller, 2001; Webb, 1992).

The paper is organized as follows. Section 2 presents the aims
and the theoretical background to the research and the develop-
ment of our study. Section 3 describes the collection methodologies

and adopted analysis procedures for elaboration on the resulting
data. Section 4 analyses and discusses on the results obtained from
the validation processes. The paper concludes by summarizing the
main ideas of this contribution and outlining ongoing and further
research.

2. Aims and background

In this section, a brief overview of the existing technolo-
gies and paradigms related to this work is presented, namely
computer-supported collaborative learning, generic programming,
service-oriented architecture, and model-driven architecture. This
overview will serve as background for the next sections and
becomes the very rationale of the CSCL software infrastructure
presented in this paper.

2.1. Computer-supported collaborative learning

Computer-supported collaborative learning (CSCL) is one of
the most influencing research paradigms dedicated to improve
teaching and learning with the help of modern information
and communication technology (Koschmann, 1996; Dillenbourg,
1999a; Strijbos et al., 2006; Stahl, 2006; Daradoumis et al., 2006).
Collaborative or group learning refers to instructional methods
where students are encouraged to work together on learning tasks.
As an example, project-based collaborative learning proves to be
a very successful method to that end (Dillenbourg, 1999b). There-
fore, CSCL applications aim to create virtual collaborative learning
environments where students, teachers, tutors, etc., are able to
cooperate with each other in order to accomplish a common learn-
ing goal.

To achieve this goal, CSCL applications provide support to three
essential aspects of collaboration, namely coordination, collabora-
tion and communication; with communication being the base for
reaching coordination and collaboration (Roseman and Greenberg,
1996). Collaboration and communication might be synchronous or
asynchronous. The former means cooperation at the same time and
the shared resource will not typically have a lifespan beyond the
sharing while the latter means cooperation at different times being
the shared resource stored in a persistent support.

2.2. Generic programming

In all advanced forms of engineering it can be observed that new
products are usually developed by reusing tried and tested parts
rather than developing them from scratch. The reuse of previously
created product parts leads to reduced costs and improved produc-
tivity and quality to such an extent that industrial processes will
take a great leap forward. Generic programming (GP) (Czarnecki
and Eisenecker, 2000) has emerged over the last years to facilitate
this possibility in the software engineering field.

GP is an innovative paradigm that attempts to make software as
general as possible without losing efficiency. It achieves its goal by
identifying interrelated high-level family from a common require-
ment set. By the application of this technique, especially in design
phases, software is developed offering a high degree of abstraction
which is applicable to a wide range of situations and domains.

By applying GP to develop computer software important objec-
tives are achieved (Caballé and Xhafa, 2003):

• Reuse. This means to be able to reuse and extend software com-
ponents widely so that it adapts to a great number of interrelated
problems.

• Quality. Here “quality” refers to the correctness and robustness of
implementation which provides the required degree of reliability.



Download English Version:

https://daneshyari.com/en/article/458902

Download Persian Version:

https://daneshyari.com/article/458902

Daneshyari.com

https://daneshyari.com/en/article/458902
https://daneshyari.com/article/458902
https://daneshyari.com

