

Available online at www.sciencedirect.com

JOURNAL OF Algebra

Journal of Algebra 304 (2006) 419-456

www.elsevier.com/locate/jalgebra

A conjecture for q-decomposition matrices of cyclotomic v-Schur algebras

Xavier Yvonne

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen, BP 5186, 14032 Caen Cedex, France

Received 6 July 2005 Available online 22 June 2006 Communicated by Michel Broué

Abstract

The Jantzen sum formula for cyclotomic v-Schur algebras yields an identity for some q-analogues of the decomposition matrices of these algebras. We prove a similar identity for matrices of canonical bases of higher-level Fock spaces. We conjecture then that those matrices are actually identical for a suitable choice of parameters. In particular, we conjecture that decomposition matrices of cyclotomic v-Schur algebras are obtained by specializing at q = 1 some transition matrices between the standard basis and the canonical basis of a Fock space.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Decomposition matrices; Cyclotomic Schur algebras; Canonical bases; Fock spaces

1. Introduction

In order to study representations of the Ariki–Koike algebra associated to the complex reflection group G(l, 1, m), Dipper, James and Mathas introduced in 1998 the cyclotomic v-Schur algebra [DJM]. This algebra depends on the two integers l and m and on some deformation parameters v, u_1, \ldots, u_l . When l = 1, the cyclotomic v-Schur algebra coincides with the v-Schur algebra of [DJ]. It is an open problem to calculate the decomposition matrix of a cyclotomic v-Schur algebra whose parameters are powers of a given *n*th root of unity. To this aim, James and Mathas proved, for cyclotomic v-Schur algebras, an important formula: the Jantzen sum formula [JM]. Given a Jantzen filtration for Weyl modules, one can define a q-analogue D(q)of the decomposition matrix; the coefficients of D(q) are graded decomposition numbers of the

0021-8693/\$ – see front matter @ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2006.03.048

E-mail address: xyvonne@math.unicaen.fr.

composition factors of Weyl modules (see Definition 2.5). The Jantzen sum formula is equivalent to the identity $D'(1) = J \triangleleft D(1)$, where $J \triangleleft$ is a matrix of \wp -adic valuations of factors of some Gram determinants (see Theorem 2.3 and Corollary 2.7).

Let $\Delta(q)$ be the matrix of the canonical basis of the degree *m* homogeneous component of a Fock representation of level *l* of $U_q(\widehat{\mathfrak{sl}}_n)$ [U2]. Uglov provided in [U2] an algorithm for computing $\Delta(q)$.

In view of Ariki's theorem for Ariki–Koike algebras [A2], it seems natural to conjecture that for a suitable choice of parameters, one has $D(q) = \Delta(q)$. This would provide an algorithm for computing decomposition matrices of cyclotomic *v*-Schur algebras. Varagnolo and Vasserot [VV] proved for l = 1 that $D(1) = \Delta(1)$. Moreover, Ryom-Hansen showed that this conjecture (still for l = 1) is compatible with the Jantzen–Schaper formula [Ry]. Passing to higher level $l \ge 1$ requires the introduction of an extra parameter $\mathbf{s}_l = (s_1, \ldots, s_l) \in \mathbb{Z}^l$, called *multi-charge*; this *l*-tuple parametrizes the Fock space of level *l* introduced by Uglov. We say that \mathbf{s}_l is *mdominant* if for all $1 \le d \le l - 1$, we have $s_{d+1} - s_d \ge m$. In this case, we conjecture that $D(q) = \Delta(q)$. Here, D(q) comes from a Jantzen filtration of the Weyl modules of the cyclotomic *v*-Schur algebra $S_{\mathbb{C}} = S_{\mathbb{C},m}(\zeta; \zeta^{s_1}, \ldots, \zeta^{s_l})$ with $\zeta := \exp(\frac{2i\pi}{n})$. Note that for any choice of roots of unity $\zeta^{r_1}, \ldots, \zeta^{r_l}$ (that is, for any $r_1, \ldots, r_l \in \mathbb{Z}/n\mathbb{Z}$) and any *m* we can find an *m*-dominant multi-charge $\mathbf{s}_l = (s_1, \ldots, s_l)$ such that $\zeta^{s_d} = \zeta^{r_d}$ ($1 \le d \le l$). Therefore, putting q = 1, our conjecture gives an algorithm for calculating the decomposition matrix of an arbitrary cyclotomic *v*-Schur algebra $\mathcal{S}_{\mathbb{C}} = \mathcal{S}_{\mathbb{C},m}(\zeta; \zeta^{s_1}, \ldots, \zeta^{s_l})$. Such a conjecture is new even for type B_m (case l = 2).

Our conjecture is supported by the following theorem. We define in a combinatorial way a matrix J^{\prec} for any multi-charge \mathbf{s}_l ; if \mathbf{s}_l is *m*-dominant, then our matrix J^{\prec} coincides with the matrix J^{\lhd} of the Jantzen sum formula. We show then that for any multi-charge \mathbf{s}_l , we have $\Delta'(1) = J^{\prec} \Delta(1)$ (Theorem 2.8).

The proof of our theorem relies on a combinatorial expression for the derivative at q = 1 of the matrix A(q), where A(q) is the matrix of the Fock space involution used for defining $\Delta(q)$. Namely, we show that $A'(1) = 2J^{\prec}$ (Theorem 2.11). The coefficients of A(q) are some analogues for Fock spaces of Kazhdan–Lusztig *R*-polynomials $R_{x,y}(q)$ for Hecke algebras. The classical computation of $R'_{x,y}(1)$ was made in [GJ], in relation with the Kazhdan–Lusztig conjecture for multiplicities of composition factors of Verma modules.

Notation 1.1. Let \mathbb{N} (respectively \mathbb{N}^*) denote the set of non-negative (respectively positive) integers, and for $a, b \in \mathbb{R}$ denote by $[\![a; b]\!]$ the discrete interval $[a, b] \cap \mathbb{Z}$. Throughout this article, we fix three integers $n, l, m \ge 1$. Let Π be the set of partitions of any integer and Π_m^l be the set of *l*-multi-partitions of *m*. The Coxeter group of type A_{r-1} (with $r \in \mathbb{N}^*$) is the symmetric group $\mathfrak{S}_r = \langle \sigma_i = (i, i+1) | 1 \le i \le r-1 \rangle$. Let ℓ be the length function on \mathfrak{S}_r and ω be the unique element of maximal length in \mathfrak{S}_r .

Part A: Statement of results

2. Statement of results

2.1. The Jantzen sum formula

Definition 2.1. [AK,BM] Let *R* be a principal ideal domain. Let *v* be an invertible element of *R* and $u_1, \ldots, u_l \in R$. The *Ariki–Koike algebra*, denoted by

Download English Version:

https://daneshyari.com/en/article/4589063

Download Persian Version:

https://daneshyari.com/article/4589063

Daneshyari.com