

journal of **Algebra**

Journal of Algebra 304 (2006) 487-499

www.elsevier.com/locate/jalgebra

The singular Riemann–Roch theorem and Hilbert–Kunz functions

Kazuhiko Kurano¹

Department of Mathematics, School of Science and Technology, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan

Received 8 July 2005

Available online 22 December 2005

Communicated by Paul Roberts

Abstract

In the paper, via the singular Riemann–Roch theorem, it is proved that the class of the eth Frobenius power eA can be described using the class of the canonical module ω_A for a normal local ring A of positive characteristic. As a corollary, we prove that the coefficient $\beta(I, M)$ of the second term of the Hilbert–Kunz function $\ell_A(M/I^{[p^e]}M)$ of e vanishes if A is a \mathbb{Q} -Gorenstein ring and M is a finitely generated e-module of finite projective dimension.

For a normal algebraic variety X over a perfect field of positive characteristic, it is proved that the first Chern class of the eth Frobenius power $F_*^e\mathcal{O}_X$ can be described using the canonical divisor K_X . © 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let (A, \mathfrak{m}) be a d-dimensional Noetherian local ring of characteristic p, where p is a prime integer. Here, \mathfrak{m} is the unique maximal ideal of A. For an \mathfrak{m} -primary ideal I and a positive integer e, we set

E-mail address: kurano@math.meiji.ac.jp.

URL: http://www.math.meiji.ac.jp/~kurano.

¹ The author is supported by a Grant-in-Aid for scientific Research Japan.

$$I^{[p^e]} = (a^{p^e} \mid a \in I)A.$$

It is easy to see that $I^{[p^e]}$ is an m-primary ideal of A. For a finitely generated A-module M, the function $\ell_A(M/I^{[p^e]}M)$ of e is called the *Hilbert–Kunz function* of M with respect to I, where $\ell_A()$ stands for the length of the given A-module. It is known that

$$\lim_{e \to \infty} \frac{\ell_A(M/I^{[p^e]}M)}{p^{de}}$$

exists [9], and this limit is called the *Hilbert–Kunz multiplicity*, which is denoted by $e_{HK}(I, M)$. Several properties of $e_{HK}(I, M)$ have been studied by many authors (Monsky, Watanabe, Yoshida, Huneke, Enescu, etc.).

Recently Huneke, McDermott and Monsky [5, Theorems 1 and 1.11, Corollary 1.10] proved the following exciting theorem:

Theorem 1.1 (Huneke, McDermott and Monsky). Let (A, \mathfrak{m}) be a d-dimensional excellent normal local ring of characteristic p, where p is a prime integer. Assume that the residue class field of A is perfect.

Let I be an \mathfrak{m} -primary ideal of A and M be a finitely generated A-module.

(1) There exists a real number $\beta(I, M)$ that satisfies the following equation:²

$$\ell_A(M/I^{[p^e]}M) = e_{HK}(I, M) \cdot p^{de} + \beta(I, M) \cdot p^{(d-1)e} + O(p^{(d-2)e}).$$

(2) Assume that A is F-finite.³ Then, there exists a \mathbb{Q} -homomorphism $\tau_I : Cl(A)_{\mathbb{Q}} \to \mathbb{R}$ that satisfies

$$\beta(I, M) = \tau_I \left(\operatorname{cl}(M) - \frac{\operatorname{rank}_A M}{p^d - p^{d-1}} \operatorname{cl}({}^1 A) \right)$$

for any finitely generated torsion-free A-module M. In particular, we have

$$\beta(I, A) = -\frac{1}{p^d - p^{d-1}} \tau_I (\operatorname{cl}(^1 A)).$$

We denote by \mathbb{Q} (respectively \mathbb{R}) the field of rational numbers (respectively real numbers). For an abelian group N, $N_{\mathbb{Q}}$ stands for $N \otimes_{\mathbb{Z}} \mathbb{Q}$.

The map $cl: G_0(A) \to Cl(A)$ is defined by Bourbaki [1] and sometimes called the *determinant map* (see Remark 2.1 below).

It is natural to ask the following questions:

² Let f(e) and g(e) be functions of e. We denote f(e) = O(g(e)) if there exists a real number K that satisfies |f(e)| < Kg(e) for all $e \gg 0$.

We say that A is F-finite if the Frobenius map $F: A \to A = {}^1A$ is module-finite. We sometimes denote the eth iteration of F by $F^e: A \to A = {}^eA$.

Download English Version:

https://daneshyari.com/en/article/4589065

Download Persian Version:

https://daneshyari.com/article/4589065

<u>Daneshyari.com</u>