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1. Introduction

Fix a prime number p and let G be a p-solvable finite group. Next, let B be a p-block
of G with defect group D and call B̃ , the Brauer correspondent of B in NG(D). Then, with
[2, Theorem 2.1] in mind, Okuyama [15, Theorem 4.1] has shown that B and B̃ contain
equal numbers of irreducible Brauer characters of height zero.

Now let N be a normal subgroup of G and let b be a p-block of N. Assume B covers b.
Following M. Murai [12, Section 2], a defect group Q of B is called an inertial defect
group of B provided that it is a defect group for the Fong–Reynolds correspondent of B in
the inertial group T of b in G.

Let ϕ be an irreducible Brauer character belonging to b. Write IBr(B|ϕ) for the set of
irreducible Brauer characters in B lying over ϕ. Also, denote by IBr0(B|ϕ), the set of all
those elements in IBr(B|ϕ) of height zero. In view of [12, Theorem 4.4(ii)], IBr0(B|ϕ) �= ∅
if and only if ϕ is of height zero and is Q-stable for some inertial defect group Q of B.

The main purpose of this paper is to prove the following generalization of the above
mentioned theorem of Okuyama.

Theorem. Let N � G, where G is p-solvable and let B and b be p-blocks of G and N

respectively such that B covers b. Call T the inertial group of b in G and let D be an
inertial defect group of B . Let ϕ be any irreducible Brauer character belonging to b. If B̂
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is the p-block of NNG(D) with defect group D such that B̂G = B , then |IBr0(B|ϕ)| =
|⋃t∈T IBr0(B̂|ϕt )|.

2. Relative π -blocks

One important ingredient we will use to prove the main theorem is the concept of a
relative p-block as defined in [8,9]. The present section serves two purposes. First we give
a brief review of the notion of a relative p-block and related concepts, and then prove a few
results on relative p-blocks needed in the next section. For the sake of generality, instead
of working with a single prime, we will work instead with a set of prime numbers.

Throughout this section we fix a set π of primes and a π -separable finite group G.
Following Isaacs [6, Section 5], the restriction χ0 of an ordinary character χ of G to the
set of π ′-elements of G is called a π ′-partial character of G. Moreover, χ0 is said to be
irreducible if it cannot be written as a sum of two π ′-partial characters and we write Iπ ′(G)

for the set of irreducible π ′-partial characters of G.
In the case where π consists of a single prime p, Iπ ′(G) coincides with the set IBr(G) of

irreducible Brauer characters of G, and more generally the irreducible π ′-partial characters
behave as π -generalizations of the irreducible Brauer characters. In particular, for any χ

in the set Irr(G) of ordinary irreducible characters of G, there are uniquely determined
nonnegative integers dχψ such that χ0 = ∑

ψ dχψψ , where ψ runs through Iπ ′(G).
For ψ ∈ Iπ ′(G), it is clear that there exists χ ∈ Irr(G) such that ψ = χ0. However, χ

is not uniquely determined in general. Nevertheless, Isaacs [4] has canonically constructed
a subset Bπ ′(G) of Irr(G) such that the restriction map χ �→ χ0 defines a bijection from
Bπ ′(G) onto Iπ ′(G).

For the remainder of this section we let N � G and μ ∈ Bπ ′(N). The characters χ ,
χ ′ ∈ Irr(G|μ) (the set of characters in Irr(G) lying over μ) are said to be linked if there
is ψ ∈ Iπ ′(G) for which dχψ �= 0 and dχ ′ψ �= 0. The equivalence classes defined by the
transitive extension of this linking are called relative π -blocks of G with respect to (N,μ),
and the set of these relative π -blocks is denoted by Blπ (G|μ). (See [9].) Note that the
relative π -blocks of G with respect to (〈1〉,1〈1〉) are exactly Slattery π -blocks of G as
defined in [16]. Also, for any Slattery π -block B of G satisfying B ∩ Irr(G|μ) �= ∅, one
can easily see that B ∩ Irr(G|μ) is a union of some relative π -blocks in Blπ (G|μ). We
should also mention that a notion of defect groups of a relative π -block in Blπ (G|μ) is
defined in [9, Section 4] and that this definition agrees with that in [17, Definition 2.2] of
defect groups of a Slattery π -block when N is trivial.

Let B ∈ Blπ (G|μ). We write Iπ ′(B) for the set of π ′-partial characters ψ ∈ Iπ ′(G) of
the form ψ = χ0 where χ ∈ B . Then it is obvious that Iπ ′(B) ⊆ Iπ ′(G|μ0), the set of φ ∈
Iπ ′(G) for which μ0 is a constituent of φN . Also, if θ ∈ B , then there is λ ∈ Bπ ′(G) with
dθλ0 �= 0. By [9, Lemma 3.3], λ ∈ Irr(G|μ) and hence λ ∈ B , as dλλ0 = 1 �= 0. Therefore
λ0 ∈ Iπ ′(B) and consequently Iπ ′(B) �= ∅.

Let ω be a π ′-partial character of some subgroup H of G. Then the induced object ωG

can be defined using the usual formula for induced characters, but applying it only to π ′-
elements. For any character α of H with α0 = ω, we have (α0)G = (αG)0 and hence ωG

is a π ′-partial character of G.
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