

Available online at www.sciencedirect.com

Journal of Algebra 295 (2006) 543-561

JOURNAL OF Algebra

www.elsevier.com/locate/jalgebra

On normal subgroups and height zero Brauer characters in a *p*-solvable group

A. Laradji

Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Received 16 December 2004

Available online 17 March 2005

Communicated by Gordon James

1. Introduction

Fix a prime number p and let G be a p-solvable finite group. Next, let B be a p-block of G with defect group D and call \widetilde{B} , the Brauer correspondent of B in $N_G(D)$. Then, with [2, Theorem 2.1] in mind, Okuyama [15, Theorem 4.1] has shown that B and \widetilde{B} contain equal numbers of irreducible Brauer characters of height zero.

Now let N be a normal subgroup of G and let b be a p-block of N. Assume B covers b. Following M. Murai [12, Section 2], a defect group Q of B is called an *inertial defect group* of B provided that it is a defect group for the Fong–Reynolds correspondent of B in the inertial group T of b in G.

Let φ be an irreducible Brauer character belonging to *b*. Write $\operatorname{IBr}(B|\varphi)$ for the set of irreducible Brauer characters in *B* lying over φ . Also, denote by $\operatorname{IBr}^0(B|\varphi)$, the set of all those elements in $\operatorname{IBr}(B|\varphi)$ of height zero. In view of [12, Theorem 4.4(ii)], $\operatorname{IBr}^0(B|\varphi) \neq \emptyset$ if and only if φ is of height zero and is *Q*-stable for some inertial defect group *Q* of *B*.

The main purpose of this paper is to prove the following generalization of the above mentioned theorem of Okuyama.

Theorem. Let $N \triangleleft G$, where G is p-solvable and let B and b be p-blocks of G and N respectively such that B covers b. Call T the inertial group of b in G and let D be an inertial defect group of B. Let φ be any irreducible Brauer character belonging to b. If \widehat{B}

E-mail address: alaradji@ksu.edu.sa.

^{0021-8693/}\$ – see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2005.01.045

is the p-block of $NN_G(D)$ with defect group D such that $\widehat{B}^G = B$, then $|\text{IBr}^0(B|\varphi)| = |\bigcup_{t \in T} \text{IBr}^0(\widehat{B}|\varphi^t)|$.

2. Relative π -blocks

One important ingredient we will use to prove the main theorem is the concept of a relative p-block as defined in [8,9]. The present section serves two purposes. First we give a brief review of the notion of a relative p-block and related concepts, and then prove a few results on relative p-blocks needed in the next section. For the sake of generality, instead of working with a single prime, we will work instead with a set of prime numbers.

Throughout this section we fix a set π of primes and a π -separable finite group *G*. Following Isaacs [6, Section 5], the restriction χ^0 of an ordinary character χ of *G* to the set of π' -elements of *G* is called a π' -partial character of *G*. Moreover, χ^0 is said to be irreducible if it cannot be written as a sum of two π' -partial characters and we write $I_{\pi'}(G)$ for the set of irreducible π' -partial characters of *G*.

In the case where π consists of a single prime p, $I_{\pi'}(G)$ coincides with the set IBr(*G*) of irreducible Brauer characters of *G*, and more generally the irreducible π' -partial characters behave as π -generalizations of the irreducible Brauer characters. In particular, for any χ in the set Irr(*G*) of ordinary irreducible characters of *G*, there are uniquely determined nonnegative integers $d_{\chi\psi}$ such that $\chi^0 = \sum_{\psi} d_{\chi\psi}\psi$, where ψ runs through $I_{\pi'}(G)$. For $\psi \in I_{\pi'}(G)$, it is clear that there exists $\chi \in Irr(G)$ such that $\psi = \chi^0$. However, χ

For $\psi \in I_{\pi'}(G)$, it is clear that there exists $\chi \in Irr(G)$ such that $\psi = \chi^0$. However, χ is not uniquely determined in general. Nevertheless, Isaacs [4] has canonically constructed a subset $B_{\pi'}(G)$ of Irr(G) such that the restriction map $\chi \mapsto \chi^0$ defines a bijection from $B_{\pi'}(G)$ onto $I_{\pi'}(G)$.

For the remainder of this section we let $N \triangleleft G$ and $\mu \in B_{\pi'}(N)$. The characters χ , $\chi' \in \operatorname{Irr}(G|\mu)$ (the set of characters in $\operatorname{Irr}(G)$ lying over μ) are said to be linked if there is $\psi \in I_{\pi'}(G)$ for which $d_{\chi\psi} \neq 0$ and $d_{\chi'\psi} \neq 0$. The equivalence classes defined by the transitive extension of this linking are called relative π -blocks of *G* with respect to (N, μ) , and the set of these relative π -blocks is denoted by $\operatorname{Bl}_{\pi}(G|\mu)$. (See [9].) Note that the relative π -blocks of *G* with respect to $(\langle 1 \rangle, 1_{\langle 1 \rangle})$ are exactly Slattery π -blocks of *G* as defined in [16]. Also, for any Slattery π -block \mathcal{B} of *G* satisfying $\mathcal{B} \cap \operatorname{Irr}(G|\mu) \neq \emptyset$, one can easily see that $\mathcal{B} \cap \operatorname{Irr}(G|\mu)$ is a union of some relative π -blocks in $\operatorname{Bl}_{\pi}(G|\mu)$. We should also mention that a notion of defect groups of a relative π -block in $\operatorname{Bl}_{\pi}(G|\mu)$ is defined in [9, Section 4] and that this definition agrees with that in [17, Definition 2.2] of defect groups of a Slattery π -block when *N* is trivial.

Let $B \in Bl_{\pi}(G|\mu)$. We write $I_{\pi'}(B)$ for the set of π' -partial characters $\psi \in I_{\pi'}(G)$ of the form $\psi = \chi^0$ where $\chi \in B$. Then it is obvious that $I_{\pi'}(B) \subseteq I_{\pi'}(G|\mu^0)$, the set of $\phi \in I_{\pi'}(G)$ for which μ^0 is a constituent of ϕ_N . Also, if $\theta \in B$, then there is $\lambda \in B_{\pi'}(G)$ with $d_{\theta\lambda^0} \neq 0$. By [9, Lemma 3.3], $\lambda \in Irr(G|\mu)$ and hence $\lambda \in B$, as $d_{\lambda\lambda^0} = 1 \neq 0$. Therefore $\lambda^0 \in I_{\pi'}(B)$ and consequently $I_{\pi'}(B) \neq \emptyset$.

Let ω be a π' -partial character of some subgroup H of G. Then the induced object ω^G can be defined using the usual formula for induced characters, but applying it only to π' -elements. For any character α of H with $\alpha^0 = \omega$, we have $(\alpha^0)^G = (\alpha^G)^0$ and hence ω^G is a π' -partial character of G.

Download English Version:

https://daneshyari.com/en/article/4589089

Download Persian Version:

https://daneshyari.com/article/4589089

Daneshyari.com