
The Journal of Systems and Software 83 (2010) 2275–2286

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

A replicated and refined empirical study of the use of friends in C++ software

Michael Englisha,∗, Jim Buckleya, Tony Cahill b

a Lero, CSIS Department, University of Limerick, Ireland
b CSIS Department, University of Limerick, Ireland

a r t i c l e i n f o

Article history:
Received 20 January 2010
Received in revised form 25 June 2010
Accepted 3 July 2010
Available online 15 July 2010

C++
Object-oriented
Empirical study
Friend
Open-source

a b s t r a c t

The friend mechanism is widely used in C++ software even though the potential benefits of its use are
disputed and little is known about when, where and why it is employed in practice. Furthermore, there
is limited empirical analysis of its impact in object-oriented software, with only one study (Counsell and
Newson, 2000) reported at journal level.

This paper aims to add to the empirical evidence of friendship’s impact by replicating Counsell and
Newson (2000)’s original study. The study’s design is refined to improve the construct validity of the
evaluation and a larger cohort of systems is used to improve the generalisability of the results. The find-
ings suggest that classes involved in friendship are coupling hotspots and that there is no link between
inheritance and friendship, contrary to the findings presented in Counsell and Newson (2000). The find-
ings also suggest that the use of friends in a class is independent of the number of hidden members in a
class.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The friend construct is a C++ mechanism which grants a class
or function access to the internal parts of other classes. Ellis and
Stroustrup (1990) define a friend of a class as a method “that is
not a member of the class but is permitted to use the private and
protected member names from the class”. Thus, the use of the friend
construct results in the creation of coupling between classes.

The friend mechanism facilitates greater accessibility between
classes in the C++ language. It has been suggested in the literature
that the friend mechanism is the prevailing coupling mechanism
used in software developed in the C++ language (Counsell et al.,
2004). Additionally, since the use of the friend construct does not
restrict coupling to occur through a class’s interface, it is often con-
sidered poor programming practice. Coplien (1992) claims that the
encapsulation provided by the protected and private mechanisms is
violated by friendship. Page-Jones (1995) describes the use of friend
methods to access the variables of a class directly as a “design sin”,
something which is usually done to improve efficiency. Similar per-
spectives can be found elsewhere (Deitel and Deitel, 2003; Lorenz
and Kidd, 1994; Harrison et al., 1997). Indeed the use of the friend
mechanism has been associated with defects in software, Briand et
al. (1997b); Subramanyam and Krishnan (2003).

In contrast Cline (1991) states that if friends are used correctly
then they enhance encapsulation. He suggests that sometimes a

∗ Corresponding author. Tel.: +353 61 202772; fax: +353 61 202734.
E-mail address: michael.english@ul.ie (M. English).

class needs to be split in half “when the two halves will have
different numbers of instances or different lifetimes”. In these cir-
cumstances each class typically needs direct internal access to
each other and this is facilitated through the friend mechanism.
Stroustrup (1994) also defends the friendship mechanism, describ-
ing it as “one protection domain granting a read-write capability
to another”. He argues that the declaration of a friend is part of
the class declaration and rejects the argument that friendship vio-
lates encapsulation as “a combination of ignorance and confusion
with non-C++ terminology”. Meyers (1998) also holds the view
that friends can be considered part of the class’s interface, but rec-
ommends that friends should be avoided whenever possible. His
advice is that if a method can be implemented in terms of the
class’s public interface, then it should not be made a friend. Booch
(1991) in commenting on object modeling, suggests that a mod-
ule’s interface should be as narrow as possible and that friends
should be chosen wisely, since friendship implies a certain trust
between classes. Hence, the general perspective is a confused pic-
ture varying between unacceptability and acceptability when used
appropriately (preferably by expert software designers).

Given this confusion, empirical investigation is imperative,
especially considering the extensive use of the friend construct
in software development in C++ (Counsell and Newson, 2000;
Counsell et al., 2004; English et al., 2005b). In fact, Counsell et al.
(2004) stated that library-based systems “showed a distinct lack
of any form of coupling (including inheritance)” between classes
“other than through the C++ friend facility”. Application-based soft-
ware also uses the friend construct regularly, although to a lesser
extent than library-based systems (English et al., 2005b).

0164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.07.013

dx.doi.org/10.1016/j.jss.2010.07.013
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:michael.english@ul.ie
dx.doi.org/10.1016/j.jss.2010.07.013


2276 M. English et al. / The Journal of Systems and Software 83 (2010) 2275–2286

Counsell and Newson (2000) have empirically studied the use
of the friend construct in four software systems and examined its
relationship with inheritance and coupling. Given the prevalence
of the friend mechanism in software, this study deserves revisiting.
Counsell and Newson (2000) suggested that the friend construct
has been used as a way of avoiding the use of inheritance, one
of the distinguishing structural (and coupling) features of the OO
paradigm. As such, there has been much discussion and disagree-
ment as to the appropriate uses of inheritance, e.g. Singh (1995);
Page-Jones (1995); Taivalsaari (1996); Willis (1996); Meyer (1997)
with many empirical studies undertaken to examine the use of
inheritance in software systems to address these disagreements,
e.g. Bieman and Zhao (1995); Cartwright (1998); Chidamber et al.
(1998); Harrison et al. (2000).

However, the extensive empirical analysis of inheritance con-
trasts markedly with the limited assessment of the use of the friend
construct, even though this construct seems to be widely used.
Therefore, there is a need for a more extensive investigation into
the use of the friend construct in software systems developed in
the C++ language.

Thus the reasons for focusing on empirical evaluation of the
friend construct can be summarized as follows:

• the extensive use of friends in C++ software (Counsell et al., 2004;
English et al., 2003).

• the debate surrounding the use of the friend mechanism and its
interaction with the inheritance mechanism.

• the limited empirical evaluation of the use of the friend mecha-
nism apart from Counsell and Newson (2000).

• to increase the construct validity of the seminal work in this
area (Counsell and Newson, 2000) by implementing a number
of refinements to the hypotheses.

• to enhance the external validity of the results. The study of
Counsell and Newson (2000) examined four systems whereas
the study reported in this paper considers a large cohort of both
library- and application-based systems from a variety of domains.

• to increase the internal validity issue of causality by considering
whether or not the size of classes in systems influences the results
presented in the previous study as found in other empirical stud-
ies by other researchers (El Emam et al., 2001).

The structure of this paper is as follows. Section 2 reports on
some related work which utilizes software metrics to investigate
the internal characteristics of software systems. The study of the
use of friends by Counsell and Newson (2000) is discussed in Sec-
tion 3. The replication of the Counsell and Newson (2000) study is
discussed in Section 3, including a description of the refinements
implemented, the study design and the results. Section 5 concludes
the paper with a summary of the findings and some avenues for
future work.

2. Related work: empirical studies of software systems

Previously reported empirical studies of the internal attributes
of software systems, including inheritance and the friend construct
are discussed in Section 2.1. The importance of replication of empir-
ical studies is highlighted below in Section 2.2.

2.1. Studying the internal attributes of software systems

Software metrics extracted from the source code of software
can help to characterise that software. For example, metrics have
helped to identify the characteristics of the friend construct, inher-
itance and coupling in software systems. For coupling in particular,
many metrics have been presented in the literature (Chidamber and

Kemerer, 1994; Harrison et al., 1998b; Henry and Kafura, 1981; Li
and Henry, 1993; Wilkie and Hylands, 1998; Yu et al., 2002; Briand
et al., 1997b). In addition, coupling measurement frameworks have
been presented which facilitate measuring coupling at different
levels of granularity (Wilkie and Kitchenham, 2000; Briand et al.,
1997a).

In all coupling relationships between classes one class acts as a
server and the other as a client. As a result coupling is measured
from the perspective of the server (which exports services) and the
client (which imports services). Many coupling metrics which have
been defined take the direction of coupling into account (Henry
and Kafura, 1981; Li and Henry, 1993; Wilkie and Hylands, 1998;
Yu et al., 2002; Briand et al., 1997b). In fact coupling measures that
amalgamate both directions of coupling are poor indicators (Yu et
al., 2002). The extraction of these metrics from systems provides the
data for the subsequent evaluation of hypotheses using statistical
analysis techniques.

Several studies involving software metrics include an analysis
of any relationships between the metrics themselves, usually via
a correlation study. This analysis is normally undertaken in the
context of a study to build a prediction model for some exter-
nal attribute using measures of the internal characteristics (i.e. the
measured metrics) of a system e.g. (Gyimothy et al., 2005; Briand
et al., 2000).

Some studies examine sets of metrics in a bit more detail. Abreu
and Capapuça (1994) studied the MOOD metrics suite applied to
five software projects. They examined some summary statistical
information (90% confidence interval) related to the metrics (Abreu
et al., 1995) and suggested upper and lower bounds for these met-
rics. Succi et al. (2005) extracted and analysed the Chidamber and
Kemerer (1994) metrics from 200 public domain projects. The
authors recommended that metrics which showed high correla-
tions with each other and those with low variance should not be
included in a predictive model.

The use of inheritance in object-oriented systems has also been
studied (Bieman and Zhao, 1995; Cartwright, 1998). They both con-
clude that inheritance is used to a limited extent, suggesting that
alternative coupling mechanisms must be in widespread use in
software systems.

Counsell and colleagues have performed a number of studies
evaluating the structure and design of object-oriented systems and
in particular their use of object-oriented facilities such as inher-
itance, encapsulation and the friend mechanism of C++ (Counsell
and Newson, 2000; Counsell et al., 2000, 2002, 2004). In these
studies, metrics are employed to facilitate the analysis and inter-
pretation of a number of hypotheses.

One such study considered the relationship between inheritance
and encapsulation by comparing the use of the protected and pri-
vate language facilities, in classes which are engaged in inheritance
and which are not engaged in inheritance (Counsell et al., 2002).
Results indicated that stand-alone classes make considerable use
of the protected mechanism, even though this feature is only use-
ful for classes engaged in inheritance. Two possible reasons for this
are suggested. The first is that these classes were removed from
their inheritance hierarchies without the protected members being
redefined. This may occur if the classes in question were key classes
in the system and were removed from the hierarchy to allow easier
access to their members (Counsell et al., 2002). The second possi-
ble reason for protected methods to appear in stand-alone classes
is that it may have been anticipated that classes were designed
with the intention of being part of an inheritance hierarchy at some
future point.

Other studies by Counsell et al. (2000, 2004) compared the use
of the coupling mechanisms (aggregation, association and gener-
alisation) with the number of methods and attributes in a class.
However, one common finding among these studies was the exten-



Download	English	Version:

https://daneshyari.com/en/article/458916

Download	Persian	Version:

https://daneshyari.com/article/458916

Daneshyari.com

https://daneshyari.com/en/article/458916
https://daneshyari.com/article/458916
https://daneshyari.com/

