

Contents lists available at ScienceDirect

Journal of Functional Analysis

Properties of Beurling-type submodules via Agler decompositions

Kelly Bickel ^{a,1}, Constanze Liaw ^{b,*,2}

ARTICLE INFO

Article history: Received 24 November 2014 Accepted 6 October 2016 Available online 11 October 2016 Communicated by D. Voiculescu

MSC: 47A13 47A20

46E22

Keywords: Two-variable model spaces Compressed shifts Agler decomposition Essential normality

ABSTRACT

In this paper, we study operator-theoretic properties of the compressed shift operators S_{z_1} and S_{z_2} on complements of submodules of the Hardy space over the bidisk $H^2(\mathbb{D}^2)$. Specifically, we study Beurling-type submodules – namely submodules of the form $\theta H^2(\mathbb{D}^2)$ for θ inner – using properties of Agler decompositions of θ to deduce properties of S_{z_1} and S_{z_2} on model spaces $H^2(\mathbb{D}^2) \ominus \theta H^2(\mathbb{D}^2)$. Results include characterizations (in terms of θ) of when a commutator $[S_{z_1}^*, S_{z_j}]$ has rank n and when subspaces associated to Agler decompositions are reducing for S_{z_1} and S_{z_2} . We include several open questions.

© 2016 Elsevier Inc. All rights reserved.

^a Department of Mathematics, Bucknell University, 360 Olin Science Building, Lewisburg, PA 17837, USA

^b CASPER and Department of Mathematics, Baylor University, One Bear Place #97328, Waco, TX 76798, USA

^{*} Corresponding author.

E-mail addresses: kelly.bickel@bucknell.edu (K. Bickel), Constanze_Liaw@baylor.edu (C. Liaw).

 $^{^1\,}$ Research supported in part by National Science Foundation DMS grant #1448846.

Research supported in part by Simons Foundation Grant #426258.

1. Introduction

1.1. Motivation

The Hardy space on the disk $H^2(\mathbb{D})$ has played a prominent role in developing both function and operator theory over the past century. Of particular importance are its shift-invariant subspaces, which (as proved by Beurling in [10]) are always of the form $\theta H^2(\mathbb{D})$ for an inner function θ . Indeed, the model theory of Sz.-Nagy-Foias [29] shows that every completely non-unitary, C_0 contraction is unitarily equivalent to the compression of multiplication by z on some $\mathcal{K}_{\theta} \equiv H^2(\mathbb{D}) \ominus \theta H^2(\mathbb{D})$, as long as θ can be operator-valued.

We are interested in generalizations of one-variable Hardy space theory to the Hardy space over the bidisk $H^2(\mathbb{D}^2)$. Substantial progress in this direction has been made by W. Rudin, R.G. Douglas, M. Gadadhar, R. Yang and many others [14,15,17,21,26,31,32], who often frame the important problems in terms of Hilbert submodules. In our situation, a Hilbert submodule M in $H^2(\mathbb{D}^2)$ is a subspace that is invariant under multiplication by the two independent variables z_1 and z_2 or equivalently, invariant under the Toeplitz operators T_{z_1}, T_{z_2} [17]. We are interested in Beurling-type submodules, namely those of the form:

$$M \equiv \theta H^2(\mathbb{D}^2),$$

where θ is inner. As shown by Mandrekar in [25], these submodules are exactly the ones on which T_{z_1} and T_{z_2} are doubly commuting. In analogy with one-variable model theory, given $\mathcal{K}_{\theta} \equiv H^2(\mathbb{D}^2) \ominus \theta H^2(\mathbb{D}^2)$, we are particularly interested in the compressed shift operators:

$$S_{z_1} \equiv P_{\theta} T_{z_1} |_{\mathcal{K}_{\theta}}$$
 and $S_{z_2} \equiv P_{\theta} T_{z_2} |_{\mathcal{K}_{\theta}}$,

where P_{θ} denotes the orthogonal projection onto \mathcal{K}_{θ} and θ is inner. The case of general analytic contractions θ is quite involved even when we consider functions of only one complex variable. See for example [16,24], which concerns Clark theory in the general situation, and the references therein.

The literature already contains a variety of results concerning commutators of S_{z_1} , S_{z_2} and their adjoints, as these operators are crucially related to both θ and the structure of \mathcal{K}_{θ} . For example, [17,20,21,31,32] contain interesting results concerning the behaviors of the commutators

$$[S_{z_1}, S_{z_2}^*]$$
 and $[S_{z_1}, S_{z_2}]$.

However, the independent behavior of S_{z_1} or S_{z_2} is not completely understood. Some results exist concerning the essential spectrum of these operators under additional conditions [32], but in general, their operator theoretic properties and connections to θ are

Download English Version:

https://daneshyari.com/en/article/4589518

Download Persian Version:

https://daneshyari.com/article/4589518

<u>Daneshyari.com</u>