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The dynamics of dilute electrons can be modeled by the 
fundamental one-species Vlasov–Poisson–Boltzmann system 
which describes mutual interactions of the electrons through 
collisions in the self-consistent electrostatic field. For cutoff 
intermolecular interactions, although there is some progress 
on the construction of global smooth solutions to its Cauchy 
problem near Maxwellians recently, the problem for the case 
of very soft potentials remains unsolved. By introducing a 
new time–velocity weighted energy method and based on some 
new optimal temporal decay estimates on the solution itself 
and some of its derivatives with respect to both the spatial 
and the velocity variables, it is shown in this manuscript 
that the Cauchy problem of the one-species Vlasov–Poisson–
Boltzmann system for all cutoff soft potentials does exist a 
unique global smooth solution for general initial perturbation 
which is unnecessary to satisfy the neutral condition imposed 
in [13] for the case of cutoff moderately soft potentials but is 
assumed to be small in certain weighted Sobolev spaces. Our 
approach applies also to the case of cutoff hard potentials 
and thus provides a satisfactory global well-posedness theory 
to the one-species Vlasov–Poisson–Boltzmann system near 
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Maxwellians for the whole range of cutoff intermolecular 
interactions in the perturbative framework.
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1. Introduction

The dynamics of dilute electrons can be modeled by the fundamental one-species 
Vlasov–Poisson–Boltzmann system (called VPB system in the sequel for simplicity) 
which describes mutual interactions of the electrons through collisions in the self-
consistent electrostatic field

∂tf + ξ · ∇xf + ∇xφ · ∇ξf = Q(f, f), (1.1)

Δxφ(t, x) =
∫
R3

f(t, x, ξ)dξ − nb(x), lim
|x|→+∞

φ(t, x) = 0. (1.2)

Here the unknown f = f(t, x, ξ) ≥ 0 is the density distribution function of electrons 
located at x = (x1, x2, x3) ∈ R

3 with velocity ξ = (ξ1, ξ2, ξ3) ∈ R
3 at time t ≥ 0. 

The potential function φ = φ(t, x) generating the self-consistent electrostatic field ∇xφ

in (1.1) is coupled with f(t, x, ξ) through the Poisson equation (1.2) where nb(x) > 0
is the background charge which is assumed to be a positive constant in the rest of this 
manuscript denoting that the background charge is spatially homogeneous and in such 
a case, we can set nb(x) = 1 without loss of generality. The bilinear collision operator 
Q(f, g) is defined by, cf. [1,17,20]

Q(f, g) =
∫
R3

∫
S2

|ξ − ξ∗|γq0(ϑ)
{
f(ξ′∗)g(ξ′) − f(ξ∗)g(ξ)

}
dξ∗dω, (1.3)

where (ξ, ξ∗) and (ξ′, ξ′∗), denoting velocities of two particles before and after their col-
lisions respectively, satisfy
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