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In this paper, we establish a moderate deviation principle for 
two-dimensional stochastic Navier–Stokes equations driven by 
multiplicative Lévy noises. The weak convergence method 
introduced by Budhiraja, Dupuis and Ganguly in [3] plays 
a key role.
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1. Introduction

Consider the two-dimensional Navier–Stokes equation with Dirichlet boundary con-
dition, which describes the time evolution of an incompressible fluid,

∂u(t, x)
∂t

− νΔu(t, x) + (u(t, x) · ∇)u(t, x) + ∇p(t, x) = f(t, x), (1.1)

with the conditions ⎧⎪⎪⎨⎪⎪⎩
(∇ · u)(t, x) = 0, for x ∈ D, t > 0,
u(t, x) = 0, for x ∈ ∂D, t ≥ 0,
u(0, x) = u0(x), for x ∈ D,

(1.2)

where D is a bounded open domain of R2 with regular boundary ∂D, u(t, x) ∈ R
2

denotes the velocity field at time t and position x, ν > 0 is the viscosity coefficient, 
p(t, x) denotes the pressure field, f is a deterministic external force.

To formulate the Navier–Stokes equation, we introduce the following standard spaces: 
let

V =
{
v ∈ H1

0 (D;R2) : ∇ · v = 0, a.e. in D
}
,

with the norm

‖v‖V :=

⎛⎝∫
D

|∇v|2dx

⎞⎠
1
2

= ‖v‖,

and let H be the closure of V in the L2-norm

|v|H :=

⎛⎝∫
D

|v|2dx

⎞⎠
1
2

= |v|.

Define the operator A (Stokes operator) in H by the formula

Au := −νPHΔu, ∀u ∈ H2(D;R2) ∩ V,

where the linear operator PH (Helmhotz–Hodge projection) is the projection operator 
from L2(D; R2) to H, and define the nonlinear operator B by
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