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1. Introduction

Malliavin calculus [23] is a classical tool for the analysis of stochastic (partial) dif-
ferential equations, e.g. [26,28] and the references therein. The aim of this paper is to
explore Malliavin calculus in the context of Hairer’s regularity structures [16], a theory
designed to provide a solution theory for certain ill-posed stochastic partial differential
equations (SPDEs) typically driven by Gaussian (white) noise. By now, there is an im-
pressive list of such equations that can be handled in this framework, many well-known
from the (non-rigorous) physics literature: KPZ, parabolic Anderson model, stochastic
quantization equation, stochastic Navier—Stokes, ...

At this moment, and despite a body of general results and a general démarche, each
equation still needs some tailor-made analysis, especially when it comes to renormaliza-
tion [16, Sec. 8,9] and convergence of renormalized approximations [16, Sec. 10], in the
context of Gaussian white noise. For this reason, we focus on one standard example of
the theory — the generalized parabolic Anderson model (gPAM) — although an effort
is made throughout, with regard to future adaptions to other equations, to emphasize
the main governing principles of our results. To be specific, recall that gPAM is given
(formally!) by the following non-linear SPDE

(0 = A)u= g,  w(0,) =uo("), (L.1)

for t > 0, g sufficiently smooth, spatial white noise £ = &(x,w) and fixed initial data wg.
Assuming periodic boundary conditions, write z € T?, the d-dimensional torus. Now a.s.
the noise is a Gaussian random distribution, of Hélder regularity @ < —d/2. Standard
reasoning suggests that u (and hence g(u)) has regularity «+ 2, due to the regularization
of the heat-flow. But the product of two such Hélder distributions is only well-defined,
if the sum of the regularities is strictly positive — which is the case in dimension d = 1
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