
Journal of Functional Analysis 271 (2016) 3554–3587

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Stabilization and controllability of first-order 

integro-differential hyperbolic equations

Jean-Michel Coron a,1, Long Hu b,a,∗,2, Guillaume Olive a,3

a Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire 
Jacques-Louis Lions, 4 place Jussieu, 75252 Paris cedex 05, France
b School of Mathematics, Shandong University, Jinan, Shandong 250100, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 November 2015
Accepted 25 August 2016
Available online 12 September 2016
Communicated by F.-H. Lin

Keywords:
Integro-differential equation
Stabilization
Controllability
Fredholm backstepping 
transformation

In the present article we study the stabilization of first-
order linear integro-differential hyperbolic equations. For 
such equations we prove that the stabilization in finite 
time is equivalent to the exact controllability property. The 
proof relies on a Fredholm transformation that maps the 
original system into a finite-time stable target system. The 
controllability assumption is used to prove the invertibility of 
such a transformation. Finally, using the method of moments, 
we show in a particular case that the controllability is reduced 
to the criterion of Fattorini.
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1. Introduction and main results

The purpose of this article is the study of the stabilization and controllability prop-
erties of the equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut(t, x) − ux(t, x) =
L∫

0

g(x, y)u(t, y) dy, t ∈ (0, T ), x ∈ (0, L),

u(t, L) = U(t), t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (0, L).

(1.1)

In (1.1), T > 0 is the time of control, L > 0 the length of the domain. u0 is the initial 
data and u(t, ·) : [0, L] −→ C is the state at time t ∈ [0, T ], g : (0, L) × (0, L) −→ C is 
a given function in L2((0, L) × (0, L)) and, finally, U(t) ∈ C is the boundary control at 
time t ∈ (0, T ).

The stabilization and controllability of (1.1) started in [13]. The authors proved that 
the equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut(t, x) − ux(t, x) =
x∫

0

g(x, y)u(t, y) dy + f(x)u(t, 0), t ∈ (0, T ), x ∈ (0, L),

u(t, L) = U(t), t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (0, L),

with g and f continuous, is always stabilizable in finite time. The proof uses the back-
stepping approach introduced and developed by M. Krstic and his co-workers (see, in 
particular, the pioneer articles [2,16,19] and the reference book [14]). This approach 
consists in mapping (1.1) into the following finite-time stable target system

⎧⎪⎨
⎪⎩

wt(t, x) − wx(t, x) = 0, t ∈ (0, T ), x ∈ (0, L),
w(t, L) = 0, t ∈ (0, T ),
w(0, x) = w0(x), x ∈ (0, L),

by means of the Volterra transformation of the second kind

u(t, x) = w(t, x) −
x∫

0

k(x, y)w(t, y)dy, (1.2)

where the kernel k has to satisfy some PDE in the triangle 0 ≤ y ≤ x ≤ L with 
appropriate boundary conditions, the so-called kernel equation. Let us emphasize that 
the strength of this method is that the Volterra transformation (1.2) is always invertible 
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