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We study existence and uniqueness of a variational solution in 
terms of stochastic variational inequalities (SVI) to stochastic 
nonlinear diffusion equations with a highly singular diffusivity 
term and multiplicative Stratonovich gradient-type noise. 
We derive a commutator relation for the unbounded noise 
coefficients in terms of a geometric Killing vector condition. 
The drift term is given by the total variation flow, respectively, 
by a singular p-Laplace-type operator. We impose nonlinear 
zero Neumann boundary conditions and precisely investigate 
their connection with the coefficient fields of the noise. This 
solves an open problem posed in Barbu et al. (2013) [7] and 
Barbu and Röckner (2015) [10].
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1. Introduction

We consider existence and uniqueness of solutions to the following (multi-valued) 
nonlinear Stratonovich stochastic diffusion equation in L2(O),

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dXt ∈ div [sgn (∇Xt)] dt +
N∑
i=1

〈bi,∇Xt〉 ◦ dβi
t , in (0, T ) ×O,

X0 = x, in O,

∂Xt

∂ν
= 0, on (0, T ) × ∂O,

(1.1)

where O is an open, bounded domain in Rd, d ≥ 2, with (sufficiently) smooth boundary 
such that O or ∂O is convex. Here, for N ≥ 1, bi : O → R

d, 1 ≤ i ≤ N are “coefficient 
fields” and β = (β1, . . . , βN ) denotes an N -dimensional Brownian motion on a filtered 

(normal) probability space 
(
Ω,F , {Ft}t≥0 ,P

)
. The initial datum is chosen as x ∈ L2(O), 

or, more generally, as x ∈ L2(Ω, F0, P; L2(O)). Here, ν denotes the outer unit normal 
on ∂O. The multi-valued graph ξ 
→ sgn(ξ) from Rd into 2Rd is defined by

sgn(ξ) :=

⎧⎨
⎩

ξ

|ξ| , , if ξ �= 0,{
ζ ∈ R

d| |ζ| ≤ 1
}

, if ξ = 0,

for all ξ ∈ R
d. Because of the multi-valued diffusivity term, the equation becomes for-

mally a stochastic evolution inclusion, as have been studied e.g. in [38,32,31]. We denote 
by |·| the Euclidean norm of Rd, and by 〈·, ·〉 the Euclidean scalar product of Rd.

Set

b :=

⎛
⎝ b1

...
bN

⎞
⎠ : O → R

N×d, (1.2)

and denote by b∗ its transpose. We have that equation (1.1) is formally equivalent to 
the Itô stochastic partial differential equation,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dXt ∈ div [sgn (∇Xt)] dt + 1
2 div[b∗b∇Xt] dt + 〈b∇Xt, dβt〉, in (0, T ) ×O,

X0 = x, in O,

∂Xt

∂ν
= 0, on (0, T ) × ∂O.

(1.3)
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