Nonlinear stochastic partial differential equations with singular diffusivity and gradient Stratonovich noise

Ioana Ciotir ${ }^{\mathrm{a}, 1}$, Jonas M. Tölle ${ }^{\mathrm{b}, *, 2}$
${ }^{\text {a }}$ Normandie Univ, INSA Rouen, LMI, 76000 Rouen, France ${ }^{3}$
b Department of Mathematics and Systems Analysis, School of Science, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland

A R T I C L E I N F O

Article history:

Received 2 February 2016
Accepted 20 May 2016
Available online 6 June 2016
Communicated by Daniel W.
Stroock

MSC:

primary 35 K 55 , 35 K 92 , 60 H 15
secondary $49 \mathrm{~J} 40,49 \mathrm{~J} 45,60 \mathrm{H} 25$

Keywords:

Stochastic variational inequality
with singular diffusivity
Stochastic total variation flow
Multiplicative gradient-type
Stratonovich noise
Killing vector field

Abstract

We study existence and uniqueness of a variational solution in terms of stochastic variational inequalities (SVI) to stochastic nonlinear diffusion equations with a highly singular diffusivity term and multiplicative Stratonovich gradient-type noise. We derive a commutator relation for the unbounded noise coefficients in terms of a geometric Killing vector condition. The drift term is given by the total variation flow, respectively, by a singular p-Laplace-type operator. We impose nonlinear zero Neumann boundary conditions and precisely investigate their connection with the coefficient fields of the noise. This solves an open problem posed in Barbu et al. (2013) [7] and Barbu and Röckner (2015) [10].

© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

We consider existence and uniqueness of solutions to the following (multi-valued) nonlinear Stratonovich stochastic diffusion equation in $L^{2}(\mathcal{O})$,

$$
\left\{\begin{array}{rlrl}
d X_{t} \in \operatorname{div}\left[\operatorname{sgn}\left(\nabla X_{t}\right)\right] d t+\sum_{i=1}^{N}\left\langle b_{i}, \nabla X_{t}\right\rangle \circ d \beta_{t}^{i}, & & \text { in }(0, T) \times \mathcal{O} \tag{1.1}\\
X_{0} & =x, & & \text { in } \mathcal{O} \\
\frac{\partial X_{t}}{\partial \nu}=0, & & \text { on }(0, T) \times \partial \mathcal{O}
\end{array}\right.
$$

where \mathcal{O} is an open, bounded domain in $\mathbb{R}^{d}, d \geq 2$, with (sufficiently) smooth boundary such that \mathcal{O} or $\partial \mathcal{O}$ is convex. Here, for $N \geq 1, b_{i}: \overline{\mathcal{O}} \rightarrow \mathbb{R}^{d}, 1 \leq i \leq N$ are "coefficient fields" and $\beta=\left(\beta^{1}, \ldots, \beta^{N}\right)$ denotes an N-dimensional Brownian motion on a filtered (normal) probability space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$. The initial datum is chosen as $x \in L^{2}(\mathcal{O})$, or, more generally, as $x \in L^{2}\left(\Omega, \mathcal{F}_{0}, \mathbb{P} ; L^{2}(\mathcal{O})\right)$. Here, ν denotes the outer unit normal on $\partial \mathcal{O}$. The multi-valued graph $\xi \mapsto \operatorname{sgn}(\xi)$ from \mathbb{R}^{d} into $2^{\mathbb{R}^{d}}$ is defined by

$$
\operatorname{sgn}(\xi):= \begin{cases}\frac{\xi}{|\xi|}, & , \text { if } \xi \neq 0 \\ \left\{\zeta \in \mathbb{R}^{d}| | \zeta \mid \leq 1\right\} & , \text { if } \xi=0\end{cases}
$$

for all $\xi \in \mathbb{R}^{d}$. Because of the multi-valued diffusivity term, the equation becomes formally a stochastic evolution inclusion, as have been studied e.g. in [38,32,31]. We denote by $|\cdot|$ the Euclidean norm of \mathbb{R}^{d}, and by $\langle\cdot, \cdot\rangle$ the Euclidean scalar product of \mathbb{R}^{d}.

Set

$$
\mathbf{b}:=\left(\begin{array}{c}
b_{1} \tag{1.2}\\
\vdots \\
b_{N}
\end{array}\right): \overline{\mathcal{O}} \rightarrow \mathbb{R}^{N \times d},
$$

and denote by \mathbf{b}^{*} its transpose. We have that equation (1.1) is formally equivalent to the Itô stochastic partial differential equation,

$$
\left\{\begin{align*}
d X_{t} & \in \operatorname{div}\left[\operatorname{sgn}\left(\nabla X_{t}\right)\right] d t+\frac{1}{2} \operatorname{div}\left[\mathbf{b}^{*} \mathbf{b} \nabla X_{t}\right] d t+\left\langle\mathbf{b} \nabla X_{t}, d \beta_{t}\right\rangle, & & \text { in }(0, T) \times \mathcal{O} \tag{1.3}\\
X_{0} & =x, & & \text { in } \mathcal{O}, \\
\frac{\partial X_{t}}{\partial \nu} & =0, & & \text { on }(0, T) \times \partial \mathcal{O} .
\end{align*}\right.
$$

https://daneshyari.com/en/article/4589557

Download Persian Version:

https://daneshyari.com/article/4589557

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ioana.ciotir@insa-rouen.fr (I. Ciotir), jonas.tolle@aalto.fi (J.M. Tölle).
 ${ }^{1}$ I.C. was partially supported by the European Union with the European Regional Development Fund (ERDF) grant no. HN 0002137 and by the Haute-Normandie Regional Council (M2NUM Project).
 ${ }^{2}$ J.M.T. gratefully acknowledges funding granted by the CRC 701 "Spectral Structures and Topological Methods in Mathematics" (Bielefeld) of the German Research Foundation (DFG).
 ${ }^{3}$ Postal address: 685 Avenue de l'Université, 76801 St Etienne du Rouvray cedex, France.

