

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Noncommutative reproducing kernel Hilbert spaces

Joseph A. Ball^{a,*}, Gregory Marx^a, Victor Vinnikov^b

 Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
 Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

ARTICLE INFO

Article history: Received 3 February 2016 Accepted 16 June 2016 Available online 22 June 2016 Communicated by K. Seip

MSC: 47B32 47A60

Keywords: Reproducing kernel Hilbert space Contractive multiplier Free noncommutative function Completely positive and completely

ABSTRACT

The theory of positive kernels and associated reproducing kernel Hilbert spaces, especially in the setting of holomorphic functions, has been an important tool for the last several decades in a number of areas of complex analysis and operator theory. An interesting generalization of holomorphic functions, namely free noncommutative functions (e.g., functions of square-matrix arguments of arbitrary size satisfying additional natural compatibility conditions), is now an active area of research, with motivation and applications from a variety of areas (e.g., noncommutative functional calculus, free probability, and optimization theory in linear systems engineering). The purpose of this article is to develop a theory of positive kernels and associated reproducing kernel Hilbert spaces for the setting of free noncommutative function theory.

© 2016 Elsevier Inc. All rights reserved.

Contents

bounded maps

1.	Introd	uction	1845
2.	Global	and noncommutative function theory	1848
	2.1.	Noncommutative sets	1848
	2.2.	Global and noncommutative functions	1850

^{*} Corresponding author. E-mail addresses: joball@math.vt.edu (J.A. Ball), marxg@vt.edu (G. Marx), vinnikov@cs.bgu.ac.il (V. Vinnikov).

	2.3.	Global and noncommutative kernels	1851
	2.4.	Completely positive global/nc kernels	1853
3.	Global	/noncommutative reproducing kernel Hilbert spaces	1856
	3.1.	Main result	1856
	3.2.	Lifted norm spaces	1874
	3.3.	Special cases and examples	1878
		3.3.1. The special case $S = \{s_0\}$	1878
		3.3.2. Reproducing kernel Hilbert spaces in the sense of Aronszajn	1890
		3.3.3. Completely positive kernels in the sense of Barreto-Bhat-Liebscher-Skeide	1894
	3.4.	Smoothness properties	1897
	3.5.	Functional versus formal noncommutative reproducing kernel Hilbert spaces	1901
4.	Multip	bliers between nc reproducing kernel Hilbert spaces	1912
	4.1.	Characterization of contractive multipliers	1912
	4.2.	The global/nc reproducing kernel Hilbert spaces associated with a contractive multi-	
		plier S	1915
Ackno	owledgn	nents	1918
Refer	ences .		1919

1. Introduction

The goal of the present paper is to incorporate the classical theory of positive kernels and reproducing kernel Hilbert spaces (see [4,1]) into the new setting of free noncommutative function theory (see [29]).

We use the following operator-valued adaptation of the notion of positive kernel developed in some depth by Aronszajn in [4]. Let Ω be a point set and K a function from the Cartesian product set $\Omega \times \Omega$ into the space $\mathcal{L}(\mathcal{Y})$ of bounded linear operators on a Hilbert spaces \mathcal{Y} . We say that K is a **positive kernel** if

$$\sum_{i,j=1}^{N} \langle K(\omega_i, \omega_j) y_j, y_i \rangle_{\mathcal{E}} \ge 0 \tag{1.1}$$

for all $\omega_1, \ldots, \omega_N \in \Omega, y_1, \ldots, y_N \in \mathcal{Y}, N = 1, 2, \ldots$ Equivalent conditions are:

- There is a Hilbert space $\mathcal{H}(K)$ consisting of \mathcal{Y} -valued functions on Ω such that K has the following **reproducing kernel** property with respect to $\mathcal{H}(K)$:
 - (1) for any $\omega \in \Omega$ and $y \in \mathcal{Y}$ the function $K_{\omega,y}$ given by $K_{\omega,y}(\omega') = K(\omega',\omega)y$ belongs to $\mathcal{H}(K)$, and
 - (2) for all $f \in \mathcal{H}(K)$ and $y \in \mathcal{Y}$, the reproducing property

$$\langle f, K_{\omega,y} \rangle_{\mathcal{H}(K)} = \langle f(\omega), y \rangle_{\mathcal{Y}}$$
 (1.2)

holds.

• There is a Hilbert space \mathcal{X} and a function $H \colon \Omega \to \mathcal{L}(\mathcal{H}(K), \mathcal{Y})$ so that the following **Kolmogorov decomposition** holds:

$$K(\omega', \omega) = H(\omega')H(\omega)^*. \tag{1.3}$$

Download English Version:

https://daneshyari.com/en/article/4589559

Download Persian Version:

https://daneshyari.com/article/4589559

<u>Daneshyari.com</u>