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The theory of positive kernels and associated reproducing
kernel Hilbert spaces, especially in the setting of holomorphic
functions, has been an important tool for the last several
decades in a number of areas of complex analysis and
operator theory. An interesting generalization of holomorphic
functions, namely free noncommutative functions (e.g., func-
tions of square-matrix arguments of arbitrary size satisfying
additional natural compatibility conditions), is now an active
area of research, with motivation and applications from a
variety of areas (e.g., noncommutative functional calculus,
free probability, and optimization theory in linear systems
engineering). The purpose of this article is to develop a theory
of positive kernels and associated reproducing kernel Hilbert
spaces for the setting of free noncommutative function theory.
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1. Introduction

The goal of the present paper is to incorporate the classical theory of positive kernels
and reproducing kernel Hilbert spaces (see [4,1]) into the new setting of free noncommu-
tative function theory (see [29]).

We use the following operator-valued adaptation of the notion of positive kernel de-
veloped in some depth by Aronszajn in [4]. Let Q be a point set and K a function from
the Cartesian product set € x Q into the space £()) of bounded linear operators on a
Hilbert spaces ). We say that K is a positive kernel if

N
Z (K(wi,wj)ys,yi)e = 0 (1.1)
i,j=1
for all wy,...,wny € Q, y1,...,yvn €YV, N =1,2,... . Equivalent conditions are:

o There is a Hilbert space H(K) consisting of Y-valued functions on €2 such that K
has the following reproducing kernel property with respect to H(K):
(1) for any w € Q and y € Y the function K, , given by K, ,(v') = K(w',w)y
belongs to H(K), and
(2) for all f € H(K) and y € Y, the reproducing property

<f7 Kw,y>7—L(K) = <f(w)7y>y (12)

holds.
o There is a Hilbert space X and a function H: Q — L(H(K),Y) so that the following
Kolmogorov decomposition holds:

K(w,w)=H(W)H(w)" (1.3)
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