
Increasing diversity: Natural language measures for software fault prediction

David Binkley a, Henry Feild b, Dawn Lawrie a,*, Maurizio Pighin c

a Loyola College Baltimore, MD 21210, USA
b University of Massachusetts, Amherst, MA 01003, USA
c Universitá degli Studi di Udine, Italy

a r t i c l e i n f o

Article history:
Available online 26 June 2009

Keywords:
Information retrieval
Code comprehension
Fault prediction
Linear regression models
Empirical software engineering

a b s t r a c t

While challenging, the ability to predict faulty modules of a program is valuable to a software project
because it can reduce the cost of software development, as well as software maintenance and evolution.
Three language-processing based measures are introduced and applied to the problem of fault prediction.
The first measure is based on the usage of natural language in a program’s identifiers. The second mea-
sure concerns the conciseness and consistency of identifiers. The third measure, referred to as the QALP
score, makes use of techniques from information retrieval to judge software quality. The QALP score has
been shown to correlate with human judgments of software quality.

Two case studies consider the language processing measures applicability to fault prediction using two
programs (one open source, one proprietary). Linear mixed-effects regression models are used to identify
relationships between defects and the measures. Results, while complex, show that language processing
measures improve fault prediction, especially when used in combination. Overall, the models explain
one-third and two-thirds of the faults in the two case studies. Consistent with other uses of language pro-
cessing, the value of the three measures increases with the size of the program module considered.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

This paper studies the application of natural language process-
ing techniques to the problem of fault prediction. Detecting fault
prone code early, regardless of software life-cycle phase, allows
for the code to be fixed at lower cost; thus, a good fault predictor
helps to lower development and maintenance costs. For example,
cost savings may come from focusing testing-effort on certain parts
of the software, restructuring code, or augmenting documentation.
Further motivation comes from Koru and Tian who observe that
‘‘software products are getting increasingly large and complex,
which makes it infeasible to apply sufficient reviews, inspections,
and testing on all product parts given finite resources” (Koru and
Tian, 2007), highlighting the need for good fault prediction.

A number of studies have found correlations between structural
characteristics of software modules and problems, such as change
or defect proneness (Bell et al., 2006; Fenton and Ohlsson, 2000;
Gyimóthy et al., 2005; Kokol et al., 2001; Koru and Tian, 2007;
Menzies et al., 2007; Munson and Khoshgoftaar, 1992). Example
structural measures include lines of code, operator counts, nesting
depth, message passing, coupling, information flow-based cohe-

sion, depth of inheritance tree, number of parents, number of pre-
vious releases in which the module occurred, and number of faults
detected in the module during the previous release (Bell et al.,
2006; Ferenc et al., 2002). However, it has been observed that there
is need for more sophisticated measures. For example, Nortel Net-
works and IBM engineers observe that the most troublesome mod-
ules are not the ones with the highest structural-measure values
(Koru and Tian, 2007); thus, observing the need for more sophisti-
cated techniques.

In addition to greater sophistication, in recent work with struc-
tural code measures, Menzies et al. argued that the particular set of
measures used in fault prediction is less important than having a
sufficient pool to choose from (Menzies et al., 2007). Diversity in
this pool is important. For example, many existing measures are
strongly correlated with lines of code. One avenue to improve fault
predictors is the search for additional measures not correlated with
those in the existing pool.

Until recently, the semantic information contained in the natu-
ral language of a program (in particular, its identifiers) has gone
underutilized in software engineering (perhaps owing to the origin
of many analyses in the compiler construction field). The measures
considered herein augment those that use structural characteris-
tics by incorporating the semantics of natural language. This com-
plements the structural information used in most measures by
providing an orthogonal view of the source code. One view of these

0164-1212/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.06.036

* Corresponding author.
E-mail addresses: binkley@cs.loyola.edu (D. Binkley), hfeild@cs.umass.edu (H.

Feild), lawrie@cs.loyola.edu (D. Lawrie), maurizio.pighin@uniud.it (M. Pighin).

The Journal of Systems and Software 82 (2009) 1793–1803

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss

http://dx.doi.org/10.1016/j.jss.2009.06.036
mailto:binkley@cs.loyola.edu
mailto:hfeild@cs.umass.edu
mailto:lawrie@cs.loyola.edu
mailto:maurizio.pighin@uniud.it
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


measures is an attempt to capture the information and intuitive
notion of well written code. While instructors have long advocated
the use of good identifier names, it is language processing tech-
niques that can quantify this value. To this end, two case studies
show that the language-oriented techniques deserve future study
in the challenging domain of software fault prediction.

Three natural language-oriented measures are studied in this
paper. The first is the simplest: it measures the percentage of nat-
ural language used in a program’s identifiers. The intuition is that
identifiers composed of natural language words may be easier for
an engineer to understand; thus, leading to fewer faults. The sec-
ond measure is the percent of identifiers violating a variant of
Deißenböck and Pizka’s rules for concise and consistent identifiers
(Deißenböck and Pizka, 2005). Ambiguity in the concepts associ-
ated with identifiers makes code harder to manipulate without
introducing faults (in particular, those associated with concept
misunderstanding). The third, referred to as the QALP score, is
named after a project aimed at providing Quality Assessment using
Language Processing (Lawrie et al., 2006). The QALP score mea-
sures correlations between the natural language use in a program’s
source code and its documentation. It thus attempts to quantify the
notion of well-documented code.

To investigate the value of the three natural language-oriented
measures in fault prediction, two case studies are considered – one
using the open source program Mozilla and the other a proprietary
program written for a business application in a mid-size enterprise.
These studies assess the utility of the language-oriented measures in
predicting fault-prone modules of source code. Of particular interest
is the notion of diverse measures and their importance in fault pre-
diction. Therefore, two models for each case study are presented. In
one model, a single language-oriented measure is used in conjunc-
tion with other structural measures. In this case, the QALP score is
used because it is the most complex of the three. The second model
incorporates all three natural language-oriented measures.

The primary contributions of this paper are the following:

1. Natural language measures. First and foremost, the paper pro-
poses the use of measures completely unrelated to structural
aspects of source code as a means of improving diversity in
the pool of fault prediction measures.

2. Case studies. It also considers two case studies that explore the
usefulness of the proposed measures in fault prediction.

The remainder of the paper includes background information in
Section 2. Then a description of the experimental setup of the two
case studies is presented in Section 3. The two case studies are pre-
sented in Section 4, followed by a discussion of related work, impli-
cations of this research, and a summary in Sections 5–7.

2. Background

This section describes each of the proposed measures, providing
motivation for their inclusion and describing their computation. All
three measures use a common preprocessing step, word extraction,
which is described first. Following the description of the measures
is a brief overview of the two case-study subjects. Finally, a
description of the statistical technique used is given.

2.1. Word extraction

Word extraction has two phases. The first extracts the identifi-
ers from the source and the second splits them into their constitu-
ent words (Feild et al., 2006; Lawrie et al., 2006). The first phase is
implemented as a simple lex-based scanner (essentially imple-
menting a simple Island Grammar (Moonen, 2001)).

The goal of the second phase is to split the extracted identifiers
into ‘words’. Each word is a sequence of characters to which some
meaning may be associated. The need for splitting comes from
identifiers that are made up of multiple ‘‘words” fused together
(e.g., rootcause). Words are often demarcated by word markers
(e.g., using CamelCaseing or under_scores). For example, the iden-
tifiers spongeBob and sponge_bob both contain the demarcated
words sponge and bob. Such words are referred to as hard words.

When words are not explicitly demarcated, a splitting algo-
rithm is used to divide each hard word into its constituent words.
One such algorithm is a greedy algorithm that recursively searches
for the longest dictionary prefix and suffix of (the remaining part
of) an identifier (Feild et al., 2006). For example, consider the code

= � Sponge Bob needs to be given a bath � =
bathðspongebobÞ;
The greedy algorithm retains the hard word bath, but decomposes
the hard word spongebob into sponge and bob. Words that are
identified by the splitting algorithm are referred to as soft words
(i.e., bath, sponge, and bob). Thus, a hard word is made up of one
or more soft words. Soft words form the atomic entities used by
the three measures.

2.2. Use of natural language

The first measure, percent natural language, is the number of un-
ique soft words found in the dictionary divided by the total num-
ber of unique soft words found in the code. It is hypothesized
that the more natural language words used in identifiers, the easier
the code will be to understand. This in turn is expected to lead to
fewer faults. To determine whether or not each soft word comes
from a natural language, it is looked up in a dictionary. When mul-
tiple natural languages are found in the source code, multiple dic-
tionaries are used. Finally, the precision of this measure is
somewhat dependent on the accuracy of the splitting algorithm.
The accuracy of the splitter used in the experiments is about 76%
(Feild et al., 2006) when compared to a human oracle. In terms
of the percent natural languages found in a program’s identifiers,
the imperfectness of the splitting algorithm is expected to cause
slightly, but uniformly, inflate scores; thus, this inflation is not ex-
pected to have a significant effect on the studies’ results.

2.3. Conciseness and consistency

The second measure is based on the percentage of identifiers
that violate syntactic conciseness and consistency rules (Lawrie
et al., 2006). Such violations potentially lead to confusion as to
the concepts represented by identifiers and thus may make the
code more fault prone. The rules are based on Deißenböck and Piz-
ka’s formal model for well-formed identifier naming (Deißenböck
and Pizka, 2005).

Deißenböck and Pizka’s rules include three requirements: two
related to identifier consistency (involving homonyms and syn-
onyms) and one related to identifier conciseness. These three are
formalized as follows: an identifier i is a homonym if it represents
more than one concept from the program (e.g., the identifier file in
Fig. 1a). Two identifiers i1 and i2 are synonyms if the concepts
associated with i1 have a non-empty overlap with the concepts
associated with i2 (e.g., the identifiers file and file_name share the
concept file name in Fig. 1b). The presence of homonyms or syn-
onyms indicate inconsistent naming of concepts in a program
and thus violate Deißenböck and Pizka’s identifier consistency rule.
Finally, an identifier i for concept c is concise if no concept less gen-
eral than c is represented by another identifier. For example, the
identifier position most directly corresponds to the concept posi-

1794 D. Binkley et al. / The Journal of Systems and Software 82 (2009) 1793–1803



Download English Version:

https://daneshyari.com/en/article/458957

Download Persian Version:

https://daneshyari.com/article/458957

Daneshyari.com

https://daneshyari.com/en/article/458957
https://daneshyari.com/article/458957
https://daneshyari.com

