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For weights ρ which are either radial on the unit ball or depend 
only on the vertical coordinate on the upper half-space, 
we describe the asymptotic behaviour of the corresponding 
weighted harmonic Bergman kernels with respect to ρα as 
α → +∞. This can be compared to the analogous situation for 
the holomorphic case, which is of importance in the Berezin 
quantization as well as in complex geometry.
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1. Introduction

Let Ω be a domain in Cn, ρ a positive smooth (= C∞) weight on Ω, L2
hol(Ω, ρα) the 

subspace of all holomorphic functions in the weighted Lebesgue space L2(Ω, ρα), and 
Kα(x, y) the reproducing kernel for L2

hol(Ω, ρα), i.e. the weighted Bergman kernel on Ω
with respect to the weight ρα. Under suitable hypothesis on Ω and ρ (namely, for Ω
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bounded and pseudoconvex, log 1
ρ strictly plurisubharmonic, and ρ a defining function 

for Ω, i.e. vanishing to precisely the first order at the boundary), it is then known that

Kα(x, x) ∼ αn

πnρ(x)α det
[
∂∂ log 1

ρ(x)

]
as α ↗ +∞. (1)

In fact, there is even a similar result for Kα(x, y) with y close to x, and one also has a 
complete asymptotic expansion as α ↗ +∞

Kα(x, y) ≈ αn

πnρ(x, y)α
∞∑
j=0

bj(x, y)
αj

, b0(x, x) = det[∂∂ log 1
ρ(x) ], (2)

with some “sesqui-analytic extension” ρ(x, y) of ρ(x) and sesqui-analytic coefficient 
functions bj(x, y). Furthermore one can differentiate (1) and (2) termwise any num-
ber of times. There are, finally, variants also for the weighted Bergman spaces with 
respect to ραψm, where ψ is another weight function satisfying the same hypotheses 
as ρ and m ≥ 0 is a fixed integer. All these “high power asymptotics” can also be ex-
tended from functions on domains Ω to sections of holomorphic Hermitian line bundles 
over a manifold Ω, and are then of central importance in certain approaches to quan-
tization (the Berezin–Toeplitz quantization procedure), as well as in complex geometry 
(where (1) is sometimes known as the Tian–Yau–Zelditch expansion, and plays promi-
nent role e.g. in connection with semistability and constant scalar curvature metrics 
on Ω); see for instance Berezin [2], Engliš [7,9], Zelditch [16], Catlin [4], Donaldson [6], 
and the references therein.

While there exist several well-understood variants of methods how to prove (1) (or (2)) 
nowadays, none of them makes it quite clear what does the holomorphy of functions in 
L2

hol have to do with (1), (2) or with the coefficients bj above; in fact, a priori there is 
little reason to expect that holomorphic functions should have anything to do either with 
quantization or with constant scalar curvature metrics, and one is just left to wonder at 
Berezin’s original insight in noticing (1) and its applications. In particular, it remains 
quite elusive what happens for other reproducing kernel subspaces in L2(Ω, ρα).

The goal of this paper is to explore the analogue of (1) for the spaces of harmonic, 
rather than holomorphic, functions, i.e. for the reproducing kernels Rα(x, y) — the har-
monic Bergman kernels — of the subspaces L2

harm(Ω, ρα) of all harmonic functions 
in L2(Ω, ρα).

In the holomorphic setting, the simplest examples for (1) and (2) are the standard 
weighted Bergman spaces on the unit disc D in C with ρ(z) = 1 − |z|2, when

Kα(x, y) = α+1
π (1 − xy)−α−2; (3)

or, equivalently (via the Cayley transform), on the upper half-plane {z : Im z > 0} in C
with ρ(z) = Im z and
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