The Journal of Systems and Software 82 (2009) 1819-1832

Contents lists available at ScienceDirect

The Journal of Systems and Software

i

journal homepage: www.elsevier.com/locate/jss

Should software testers use mutation analysis to augment a test set?

Ben H. Smith *, Laurie Williams

Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206, United States

ARTICLE INFO ABSTRACT

Article history:
Available online 24 June 2009

Mutation testing has historically been used to assess the fault-finding effectiveness of a test suite or other
verification technique. Mutation analysis, rather, entails augmenting a test suite to detect all killable
mutants. Concerns about the time efficiency of mutation analysis may prohibit its widespread, practical
use. The goal of our research is to assess the effectiveness of the mutation analysis process when used by soft-
ware testers to augment a test suite to obtain higher statement coverage scores. We conducted two empirical
studies and have shown that mutation analysis can be used by software testers to effectively produce new
test cases and to improve statement coverage scores in a feasible amount of time. Additionally, we find
that our user study participants view mutation analysis as an effective but relatively expensive technique
for writing new test cases. Finally, we have shown that the choice of mutation tool and operator set can

Keywords:

Mutation testing
Empirical effectiveness
User study

Mutation analysis

Test adequacy

Web application
Open source

Unit testing
Mutation testing tool

play an important role in determining how efficient mutation analysis is for producing new test cases.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Mutation testing is a testing methodology in which a software
tester executes two or more program mutations (mutants for
short) against the same test suite to evaluate the ability of the test
suite or other verification technique to detect these alterations
(IEEE, 1990; Trakhtenbrot, 2007). A mutant (or mutation) is a com-
puter program that has been purposely altered from its original
version (DeMillo et al., 1988). Mutants are automatically created
via a mutation testing tool using mutation operators. A mutation
operator is a set of instructions for making a simple change to
the source code (DeMillo et al., 1988). For example, one mutation
operator changes one binary operator (e.g. &) to another (e.g. ||)
in an attempt to create a fault variant of the program.

Mutation testing has historically been used to assess the fault-
finding effectiveness of a test suite or other verification technique.
We use the term mutation analysis to denote the process of aug-
menting an existing test suite to make that test suite mutation ade-
quate, meaning that the test suite detects all non-equivalent
mutants (Murnane et al., 2001). After completing mutation analy-
sis, the augmented test suite may reveal latent faults and may de-
tect faults which might be introduced while the system under test
is further developed (Andrews et al., 2005).

Mutation analysis is computationally expensive and inefficient
(Frankl et al., 1997). Mutation operators are intended to produce
mutants which demonstrate inadequacies in the test set — that is,

* Corresponding author.
E-mail addresses: ben_smith@ncsu.edu (B.H. Smith), williams@csc.ncsu.edu
(L. Williams).

0164-1212/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/].jss.2009.06.031

the need for more test cases (Frankl et al., 1997). However, some
mutation operators produce mutants which cannot be detected
by a test suite, and the tester must manually determine these are
stubborn, or “false positive” mutants. Stubborn mutants make a
mutation adequate test suite difficult to achieve in practice. Addi-
tionally, when testers add a new test case, they frequently detect
more mutants than was intended, which brings into question the
necessity of multiple variations of the same mutated statement.

Using the Goal-Question-Metric (GQM) Basili (1992) approach,
we formulated our research goal: The goal of our research is to as-
sess the effectiveness of the mutation analysis process when used
by software testers to augment a test suite to obtain higher state-
ment coverage scores.

Using the goal templates provided by the GQM process, we can
rephrase this goal as:

Analyze the mutation analysis process
for the purpose of evaluation

with respect to effectiveness

from the viewpoint of the software tester
in the context of test case augmentation.

From this reformulation, we elicit four major questions which
can help us achieve our goal:

Q1. What is the effect of mutation analysis on coverage scores?

Q2. How long does a developer spend on each new test case
while performing mutation analysis?

Q3. Do software testers find mutation analysis useful for aug-
menting a test set?

http://dx.doi.org/10.1016/j.jss.2009.06.031
mailto:ben_smith@ncsu.edu
mailto:williams@csc.ncsu.edu
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

1820 B.H. Smith, L. Williams/The Journal of Systems and Software 82 (2009) 1819-1832

Q4. In terms of the set of operators, which operator(s) produces
the most new tests?

We conducted two studies to provide insight into these ques-
tions. For our first study, we set out to answer Q1-3. We conducted
a user study where we observed our participants as they per-
formed mutation analysis for 60 min. For this study, our partici-
pants used the Jumble! mutation testing tool (Irvine et al., 2007).
In our second study, we set out to answer Q4. We performed muta-
tion analysis on the set of mutants created by the MuJava? tool,
which employs more operators, to empirically determine which
operators are the most effective at producing new tests (Offutt
et al., 2004).

The remainder of this paper is organized as follows: Section 2
briefly explains mutation testing and summarizes other studies
that have been conducted to evaluate its efficacy. Then, Section 3
presents our user study of mutation testing when used by software
testers. Next, Section 4 discusses our empirical study on the behav-
ior of mutants of a given operator set. Finally, Section 5 concludes.

2. Background and related work

Section 2.1 gives required background information on mutation
testing. Section 2.2 analyzes several related works on the
technique.

2.1. Mutation testing

Mutation testing is conducted in two phases. In the first phase,
the code is altered into several instances, called mutants, which are
then compiled. Mutation generation and compiling can be done
automatically, using a mutation engine, or by hand. Each mutant
is a copy of the original program with the exception of one atomic
change. The atomic change is made based upon a specification
embodied in a mutation operator. The use of atomic changes in
mutation testing is based on two ideas: the Competent Program-
mer Hypothesis and the Coupling Effect. The Competent Program-
mer Hypothesis states that developers are generally likely to create
a program that is close to being correct (DeMillo et al., 1978). The
Coupling Effect assumes “test cases that distinguish programs with
minor differences from each other are so sensitive that they can
distinguish programs with more complex differences” (DeMillo
et al., 1978).

Mutation operators are classified by the language constructs
they are created to alter. Traditionally, the scope of operators
was limited to statements within the body of a single procedure
(Alexander et al., 2002). Operators of this type are referred to as
traditional, or method-level, mutants. For example, one traditional
mutation operator changes one binary operator (e.g. &&) to an-
other (e.g. ||) in an attempt to create a fault variant of the program.
Recently, class-level operators, or operators that test at the object
level, have been developed (Alexander et al., 2002). Certain class-
level operators in the Java programming language, for instance, re-
place method calls within source code with a similar call to a dif-
ferent method. Class-level operators take advantage of the
object-oriented features of a given language. They are employed
to expand the range of possible mutation to include specifications
for a given class and inter-class execution.

In the second phase of mutation testing, a test suite is executed
against a mutant and pass/fail results are recorded. If the test re-
sults of a mutant are different than the original’s, the mutant is
said to be killed (Alexander et al., 2002), meaning at least one test

! http://sourceforge.net/projects/jumble.
2 http://cs.gmu.edu/~offutt/mujava/.

case was adequate to catch the mutation performed. If the test re-
sults of a mutant are the same as the original’s, then the mutant is
said to live or to be living (Alexander et al., 2002) indicating that the
change represented by the mutant escaped the test cases. Stub-
born® mutants are mutants that cannot be killed due to logical equiv-
alence with the original code or due to language constructs (Hierons
et al., 1999). A mutation score is calculated by dividing the number
of killed mutants by the total number of mutants. A mutation score
of 100% is considered to indicate that the test suite is adequate (Off-
utt et al., 1996). However, the inevitability of stubborn mutants may
make a mutation score of 100% unachievable. In practice, mutation
analysis entails creating a test set which will kill all mutants that
can be killed (i.e. are not stubborn).

In an earlier study, we have shown that mutation analysis is a
viable technique to guide test case creation (Smith and Williams,
2009). To leverage mutation analysis for this purpose, the ideal is
for every mutant to be detectable and to in fact produce a new test
case. The effectiveness of the mutation analysis process, then, can
be viewed as the number of new test cases a mutant set produces.

2.2. Related studies

Offutt et al. contend, “Research in mutation testing can be clas-
sified into four types of activities: (1) defining mutation operators,
(2) developing mutation systems, (3) inventing ways to reduce the
cost of mutation analysis, and (4) experimentation with mutation”
(Offutt et al., 2006). In this sub-section, we summarize the research
related to the last item, experimentation with mutation, the body
of knowledge to which our research adds.

Several researchers have investigated the efficacy of mutation
testing. Andrews et al. (2005) chose eight popular C programs to
compare hand-seeded faults to those generated by automated
mutation engines. The authors found the faults seeded by experi-
enced developers were harder to catch. The authors also found that
faults conceived by automated mutant generation were more rep-
resentative of real world faults, whereas the faults inserted by
hand underestimate the efficacy of a test suite by emulating faults
that would most likely never happen.

Some researchers have extended the use of mutation testing to
include specification analysis. Rather than mutating the source
code of a program, specification-based mutation analysis changes
the inputs and outputs of a given executable unit. Murnane et al.
(2001) illustrate that mutation analysis must be verified for effi-
cacy against more traditional black box techniques which employ
this technique, such as boundary value and equivalence class par-
titioning. The authors completed test suites for a data-vetting and a
statistical analysis program using equivalence class and boundary
value analysis testing techniques. The resulting test cases for these
techniques were then compared to the resulting test cases from
mutation analysis to identify redundant tests and to assess the va-
lue of any additional tests that may have been generated. The case
study revealed that there was only 14-18% equivalence between
the test cases revealed by traditional specification analysis tech-
niques and those generated by mutation analysis. This result indi-
cates that performing mutation analysis will reveal many pertinent
test cases that traditional specification techniques will not.

Frankl et al. (1997) compare analysis testing to all-uses testing
using a set of common C programs, which contained naturally-
occurring faults. All-uses testing entails generating a test suite to
cause and expect outcomes from every possible path through the
call graph of a given system. The authors concede that for some

3 Stubborn mutants are more clearly defined as those living mutants that may or
may not be equivalent to the original source code. Sometimes, a mutant remains alive
and yet cannot be feasibly proven equivalent through formal analysis (Hierons et al.,
1999).

http://sourceforge.net/projects/Jumble
http://cs.gmu.edu/~offutt/mujava/

Download English Version:

https://daneshyari.com/en/article/458959

Download Persian Version:

https://daneshyari.com/article/458959

Daneshyari.com

https://daneshyari.com/en/article/458959
https://daneshyari.com/article/458959
https://daneshyari.com

