

Contents lists available at ScienceDirect Journal of Functional Analysis

www.elsevier.com/locate/jfa

Idempotents with small norms

Jayden Mudge¹, Hung Le Pham^{*}

School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand

ARTICLE INFO

Article history: Received 16 October 2015 Accepted 8 February 2016 Available online 19 February 2016 Communicated by Stefaan Vaes

MSC: 43A10 43A30

Keywords: Idempotent Fourier algebra Fourier–Stieltjes algebra Completely bounded multiplier

ABSTRACT

Let Γ be a locally compact group. We answer two questions left open in [8] and [10]:

- (i) For abelian Γ , we prove that if $\chi_S \in B(\Gamma)$ is an idempotent with norm $||\chi_S|| < \frac{4}{3}$, then S is the union of two cosets of an open subgroup of Γ .
- (ii) For general Γ , we prove that if $\chi_S \in M_{cb}A(\Gamma)$ is an idempotent with norm $\|\chi_S\|_{cb} < \frac{1+\sqrt{2}}{2}$, then S is an open coset in Γ .

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In his 1968 papers, Saeki determined idempotent measures on a locally compact abelian group G with small norms. This is equivalent to determining idempotent functions in the Fourier–Stieltjes algebras $B(\Gamma)$ on a locally compact abelian group Γ with

 1 The first author is supported by the Victoria University of Wellington Masters by thesis Scholarship 2015.

^{*} Corresponding author.

E-mail addresses: jayden.mudge@msor.vuw.ac.nz (J. Mudge), hung.pham@vuw.ac.nz (H.L. Pham).

small norms (where Γ and G could be taken as Pontryagin duals of each other). The statements of Saeki's results in the Fourier–Stieltjes setting are:

Theorem 1.1 (Saeki). Let Γ be a locally compact abelian group, and let φ be an idempotent function in $B(\Gamma)$ so that $\varphi = \chi_S$ for some nonempty $S \subseteq \Gamma$. Then:

- (i) (See [7].) If $\|\varphi\| < \frac{1+\sqrt{2}}{2}$, then S is an open coset in Γ .
- (ii) (See [8].) If $\|\varphi\| \in (1, \frac{\sqrt{17}+1}{4})$, then S is the union of two cosets of an open subgroup of Γ but is not a coset itself.

For abelian Γ , it is well-known (see [6, p. 73]) that if S is an open coset in Γ , then $\|\chi_S\| = 1$, and whereas if S is the union of two cosets of an open subgroup of Γ but is not a coset itself, then

$$\|\chi_S\| = \begin{cases} \frac{2}{q \sin(\pi/2q)} & \text{if } q \text{ is odd} \\ \frac{2}{q \tan(\pi/2q)} & \text{if } q \text{ is even} \\ \frac{4}{\pi} & \text{if } q = \infty \end{cases}$$
(1.1)

where $q \ge 3$ is the "relative order" of the two cosets forming S. The largest value in (1.1) is $\frac{4}{3}$ when q = 3 and the smallest one is $\frac{1+\sqrt{2}}{2}$ when q = 4. In particular, the number $\frac{1+\sqrt{2}}{2}$ in Theorem 1.1(i) is sharp.

The paper [8] asked whether or not the interval $(1, \frac{\sqrt{17}+1}{4})$ in Theorem 1.1(ii) could be increased to $(1, \frac{4}{3})$, and we answer this in affirmative in Theorem 3.4. Note that the interval $(1, \frac{4}{3})$ is sharp because of the discussion in the previous paragraph and also since there are idempotents χ_S of B(Γ) with $\|\chi_S\| = \frac{4}{3}$ but S is not any union of two cosets of open subgroup of Γ (see the last paragraph of [8]).

Lesser is known about idempotents in $B(\Gamma)$ with small norms for general locally compact group Γ . Ilie and Spronk [4] proved that χ_S is an idempotent in $B(\Gamma)$ with $\|\chi_S\| = 1$ if and only if S is an open coset in Γ ; the Fourier–Stieltjes norm is weakened to the norm $\|\cdot\|_{cb}$ of $M_{cb}A(\Gamma)$ by Forrest and Runde in [3]. More generally, Stan proved the following.

Theorem 1.2. (See Stan [10].) Let Γ be a locally compact group, and let φ be an idempotent function in $M_{cb}A(\Gamma)$ so that $\varphi = \chi_S$ for some nonempty $S \subseteq \Gamma$. If $\|\varphi\|_{cb} < \frac{2}{\sqrt{3}}$, then S is an open coset in Γ , and in which case $\|\varphi\|_{cb} = 1$.

Here $M_{cb}A(\Gamma)$ is the completely bounded multiplier algebra of the Fourier algebra $A(\Gamma)$ and is defined as follows. Since the Fourier algebra $A(\Gamma)$ is the predual of the group von Neumann algebra $VN(\Gamma)$, it has a canonical operator space structure, which makes it a completely contractive operator algebra (see the monograph [2] for more details). The completely bounded multiplier algebra $M_{cb}A(\Gamma)$ of $A(\Gamma)$ consists of those continuous functions $\varphi: \Gamma \to \mathbb{C}$ such that the mapping

Download English Version:

https://daneshyari.com/en/article/4589612

Download Persian Version:

https://daneshyari.com/article/4589612

Daneshyari.com