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We obtain an improvement of the bilinear estimates of Burq, 
Gérard and Tzvetkov [6] in the spirit of the refined Kakeya–
Nikodym estimates [2] of Blair and the second author. We do 
this by using microlocal techniques and a bilinear version of 
Hörmander’s oscillatory integral theorem in [7].
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1. Introduction

Let (M, g) be a two-dimensional compact boundaryless Riemannian manifold with 
Laplacian Δg. If eλ are the associated eigenfunctions of 

√
−Δg such that −Δgeλ = λ2eλ, 

then it is well known that

‖eλ‖L4(M) ≤ C λ
1
8 ‖eλ‖L2(M), (1.1)

which was proved in [9] using approximate spectral projectors χλ = χ(λ −
√

−Δg) and 
showing

‖χλ f‖L4(M) ≤ C λ
1
8 ‖f‖L2(M). (1.2)

If 0 < λ ≤ μ and eλ, eμ are two associated eigenfunctions of 
√
−Δg as above, Burq 

et al. [6] proved the following bilinear L2-refinement of (1.1)

‖eλeμ‖L2(M) ≤ C λ
1
4 ‖eλ‖L2(M)‖eμ‖L2(M), (1.3)

as a consequence of a more general bilinear estimate on the reproducing operators∥∥χλfχμg
∥∥
L2(M) ≤ C λ

1
4 ‖f‖L2(M)‖g‖L2(M). (1.4)

The bilinear estimate (1.3) plays an important role in the theory of nonlinear Schrödinger 
equations on compact Riemannian surfaces and it is sharp in the case when M = S

2

endowed with the canonical metric and eλ(x) = hp(x), eμ(x) = hq(x) are highest weight 
spherical harmonic functions of degree p and q, concentrating along the equator{

x = (x1, x2, x3) : x2
1 + x2

2 = 1, x3 = 0
}

with λ2 = p(p + 1), μ2 = q(q + 1). Indeed, one may take hk(x) = (x1 + ix2)k to see 
‖hk‖2 ≈ k−1/4 by direct computation.

In Section 2, we will construct a generic example to show the optimality of (1.4) and 
exhibit that the mechanism responsible for the optimality seems to be the existence of 
eigenfunctions concentrating along a tubular neighborhood of a segment of a geodesic. 
As observed in [10], (1.2) is saturated by constructing an oscillatory integral which highly 
concentrates along a geodesic. The dynamical behavior of geodesic flows on M accounts 
for the analytical properties of eigenfunctions exhibits the transference of mathematical 
theory from classical mechanics to quantum mechanics (see [12]).

That the eigenfunctions concentrating along geodesics yield sharp spectral projector 
inequalities leads naturally to the refinement of (1.1) in [5] and [11], where it is proved 
for an L2 normalized eigenfunction eλ, its L4-norm is essentially bounded by a power of

sup
γ∈Π

1
|Tλ−1/2(γ) |

∫
T
λ−1/2 (γ)

| eλ(x) |2 dx, (1.5)
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