

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Bilinear Kakeya–Nikodym averages of eigenfunctions on compact Riemannian surfaces ☆

Changxing Miao ^a, Christopher D. Sogge ^b, Yakun Xi ^{b,*}, Jianwei Yang ^{c,d}

- ^a Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
- ^b Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA
- ^c LAGA (UMR 7539), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, France
- ^d Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China

ARTICLE INFO

Article history:
Received 26 February 2016
Accepted 12 April 2016
Available online 22 April 2016
Communicated by L. Saloff-Coste

Keywords: Eigenfunctions Bilinear estimates Kakeya–Nikodym averages

ABSTRACT

We obtain an improvement of the bilinear estimates of Burq, Gérard and Tzvetkov [6] in the spirit of the refined Kakeya–Nikodym estimates [2] of Blair and the second author. We do this by using microlocal techniques and a bilinear version of Hörmander's oscillatory integral theorem in [7].

© 2016 Elsevier Inc. All rights reserved.

 $^{^{\}pm}$ The first author was supported in part by the NSF of China (No. 11231006, No. 11371059). The second author was supported in part by the NSF grant DMS-1361476. The fourth author was supported by ERC Advanced Grant No. 291214 BLOWDISOL.

^{*} Corresponding author.

E-mail addresses: miao_changxing@iapcm.ac.cn (C. Miao), sogge@jhu.edu (C.D. Sogge), ykxi@math.jhu.edu (Y. Xi), geewey_young@pku.edu.cn (J. Yang).

1. Introduction

Let (M,g) be a two-dimensional compact boundaryless Riemannian manifold with Laplacian Δ_g . If e_{λ} are the associated eigenfunctions of $\sqrt{-\Delta_g}$ such that $-\Delta_g e_{\lambda} = \lambda^2 e_{\lambda}$, then it is well known that

$$||e_{\lambda}||_{L^{4}(M)} \le C \lambda^{\frac{1}{8}} ||e_{\lambda}||_{L^{2}(M)},$$
 (1.1)

which was proved in [9] using approximate spectral projectors $\chi_{\lambda} = \chi(\lambda - \sqrt{-\Delta_g})$ and showing

$$\|\chi_{\lambda} f\|_{L^{4}(M)} \le C \lambda^{\frac{1}{8}} \|f\|_{L^{2}(M)}. \tag{1.2}$$

If $0 < \lambda \le \mu$ and e_{λ} , e_{μ} are two associated eigenfunctions of $\sqrt{-\Delta_g}$ as above, Burq et al. [6] proved the following bilinear L^2 -refinement of (1.1)

$$||e_{\lambda}e_{\mu}||_{L^{2}(M)} \le C \lambda^{\frac{1}{4}} ||e_{\lambda}||_{L^{2}(M)} ||e_{\mu}||_{L^{2}(M)},$$
 (1.3)

as a consequence of a more general bilinear estimate on the reproducing operators

$$\|\chi_{\lambda} f \chi_{\mu} g\|_{L^{2}(M)} \le C \lambda^{\frac{1}{4}} \|f\|_{L^{2}(M)} \|g\|_{L^{2}(M)}. \tag{1.4}$$

The bilinear estimate (1.3) plays an important role in the theory of nonlinear Schrödinger equations on compact Riemannian surfaces and it is sharp in the case when $M = \mathbb{S}^2$ endowed with the canonical metric and $e_{\lambda}(x) = h_p(x)$, $e_{\mu}(x) = h_q(x)$ are highest weight spherical harmonic functions of degree p and q, concentrating along the equator

$${x = (x_1, x_2, x_3) : x_1^2 + x_2^2 = 1, x_3 = 0}$$

with $\lambda^2 = p(p+1)$, $\mu^2 = q(q+1)$. Indeed, one may take $h_k(x) = (x_1 + ix_2)^k$ to see $||h_k||_2 \approx k^{-1/4}$ by direct computation.

In Section 2, we will construct a generic example to show the optimality of (1.4) and exhibit that the mechanism responsible for the optimality seems to be the existence of eigenfunctions concentrating along a tubular neighborhood of a segment of a geodesic. As observed in [10], (1.2) is saturated by constructing an oscillatory integral which highly concentrates along a geodesic. The dynamical behavior of geodesic flows on M accounts for the analytical properties of eigenfunctions exhibits the transference of mathematical theory from classical mechanics to quantum mechanics (see [12]).

That the eigenfunctions concentrating along geodesics yield sharp spectral projector inequalities leads naturally to the refinement of (1.1) in [5] and [11], where it is proved for an L^2 normalized eigenfunction e_{λ} , its L^4 -norm is essentially bounded by a power of

$$\sup_{\gamma \in \Pi} \frac{1}{|T_{\lambda^{-1/2}}(\gamma)|} \int_{T_{\lambda^{-1/2}}(\gamma)} |e_{\lambda}(x)|^2 dx, \tag{1.5}$$

Download English Version:

https://daneshyari.com/en/article/4589619

Download Persian Version:

https://daneshyari.com/article/4589619

Daneshyari.com