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We prove that for any two quasi-Banach spaces X and Y and 
any α > 0 there exists a constant γα > 0 such that

sup
1≤k≤n

kαek(T ) ≤ γα sup
1≤k≤n

kαck(T )

holds for all linear and bounded operators T : X → Y . 
Here ek(T ) is the k-th entropy number of T and ck(T ) is the 
k-th Gelfand number of T . For Banach spaces X and Y this 
inequality is widely used and well-known as Carl’s inequality. 
For general quasi-Banach spaces it is a new result.
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1. Introduction

The theory of s-numbers [7,30,32] (sometimes also called n-widths) emerged from the 
studies of geometry of Banach spaces and of operators between them but found many 
applications in numerical analysis as well as linear and non-linear approximation theory 
[9–11,29,27]. It turned out to be also useful in estimates of eigenvalues of operators [5,8,
25,31].

One of the most useful tools in the study of s-numbers is Carl’s inequality [5], which 
relates the behavior of several of the most important scales of s-numbers to their entropy 
numbers (see below for the exact definitions). If X and Y are Banach spaces and if 
T : X → Y is a bounded linear operator between them, then Carl’s inequality states 
that for every natural number n ∈ N

sup
1≤k≤n

kαek(T ) ≤ γα sup
1≤k≤n

kαsk(T ). (1.1)

Here, ek(T ) denotes the entropy numbers of T and sk(T ) stands for any of the approx-
imation, Gelfand, or Kolmogorov numbers. For the definition of these quantities, let 
T : X → Y be a bounded linear operator between quasi-Banach spaces X and Y . Then 
we define the Gelfand numbers cn(T ), the Kolmogorov numbers dn(T ), the approxima-
tion numbers an(T ) and the entropy numbers en(T ), respectively, by

cn(T ) = inf
M⊂X

codim M<n

sup
x∈M

‖x‖X≤1

‖Tx‖Y

dn(T ) = inf
N⊂Y

dimN<n

sup
‖x‖X≤1

inf
z∈N

‖Tx− z‖Y

an(T ) = inf{‖T − L‖ : L : X → Y, rank(L) < n}

en(T ) = inf
{
ε > 0 : T (BX) ⊂

2n−1⋃
j=1

(yj + εBY )
}
.

In the last definition, BX can denote either the open or the closed unit ball in X. While 
usually the closed unit ball is used, for technical reasons we prefer to work with the open 
unit ball BX = {x ∈ X : ‖x‖X < 1}.

The main result of this note is that Carl’s inequality holds also for quasi-Banach 
spaces and Gelfand numbers.

Theorem 1.1. Let X and Y be quasi-Banach spaces. Then for any α > 0 there exists a 
constant γα > 0 such that

sup
1≤k≤n

kαek(T ) ≤ γα sup
1≤k≤n

kαck(T ) (1.2)

holds for all linear and bounded operators T : X → Y .
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