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1. Introduction

The Sobolev inequality is a fundamental tool in all analysis related to partial differ-
ential equations and variational problems, see e.g. [7,29]. When G C R"™ is an open set
and 1 < p < n, this inequality states that
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where the constant C' > 0 depends only on n and p. If G is bounded (or of finite measure)
and 1 < g < np/(n—p) =: p*, a simple use of Holder’s inequality yields a corresponding
inequality where on the left-hand side of (1) the p*-norm is replaced by the g-norm; the
constant in the inequality then depends on the measure of G as well. In particular, for
q = p this gives the so-called Friedrichs’ inequality

1/p 1/p
(/|f|pd:c) SC’(/|Vf|pdx) for all f € C3°(G).
G G

However, if p > 1 and the open set G satisfies some additional properties, e.g. G is
a Lipschitz domain or more generally the complement of G is uniformly p-fat, then
Friedrichs’ inequality can be improved into a p-Hardy inequality
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where dpg(z) = dist(z, dG) denotes the distance from x € G to the boundary of G; see
e.g. Lewis [26] and Wannebo [35]. Unlike Friedrichs’ inequality, this p-Hardy inequality
can be valid even if the open set G has infinite measure. A weighted (p, 8)-Hardy inequal-
ity is obtained from inequality (2) by replacing dz with 5§G dz, B € R, on both sides
of (2). Such an inequality holds, for instance, in a Lipschitz domain G for 1 < p < oo
if (and only if) 8 < p — 1, as was shown by Necas [30]. On the other hand, if, roughly
speaking, 0G contains an isolated part of dimension n — p + 3, then the (p, 8)-Hardy
inequality can not be valid in G C R"™; we refer to [20,23].

In this paper, we are interested in certain inequalities forming a natural interpolating
scale in between the (weighted) Sobolev inequalities and the (weighted) Hardy inequal-
ities. More precisely, we say that an open set G C R™ admits a (q, p, B)-Hardy—Sobolev
inequality if there is a constant C' > 0 such that the inequality
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holds for all f € C§°(G). Notice how the Sobolev inequality (1) is obtained as the case
g =p* =np/(n—p), B =0in (3); and the weighted (p, 8)-Hardy inequality is exactly
the case ¢ = p in (3).

We begin in Section 2 by showing that if an open set G C R™ admits a (p, 3)-Hardy
inequality, then also (g, p, 8)-Hardy—Sobolev inequalities hold for all p < ¢ < p*, see
Theorem 2.1. Thus, for these g, sufficient conditions for Hardy inequalities always yield
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