

Existence results for the fractional Nirenberg problem

Yan-Hong Chen^a, Chungen Liu^{a,b}, Youquan Zheng^{c,*}

^a School of Mathematical Science, Nankai University, Tianjin 300071, PR China

^b LPMC, Nankai University, Tianjin 300071, PR China

^c School of Science, Tianjin University, Tianjin 300072, PR China

ARTICLE INFO

Article history: Received 5 June 2014 Accepted 23 March 2016 Available online 1 April 2016 Communicated by H. Brezis

Keywords: Critical points at infinity Fractional Laplacian Morse theory Nirenberg problem

ABSTRACT

We consider the fractional Nirenberg problem on the standard sphere \mathbb{S}^n with $n \geq 4$. Using the theory of critical points at infinity, we establish an Euler-Hopf type formula and obtain some existence results for curvature satisfying assumptions of Bahri–Coron type.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The famous Nirenberg problem in conformal geometry is: on the sphere \mathbb{S}^n $(n \geq 2)$ with standard metric g_0 , is there a representation g of the conformal class $[g_0]$ such that g has scalar curvature (Gauss curvature for n = 2) equal to a prescribed function K? This problem is equivalent to the following equations

^{*} Corresponding author.

E-mail addresses: cyh1801@163.com (Y.-H. Chen), liucg@nankai.edu.cn (C. Liu), zhengyq@tju.edu.cn (Y. Zheng).

$$-\Delta_{g_0} u + 1 = K e^u, \quad \text{on } \mathbb{S}^2,$$

$$-\Delta_{g_0} u + \frac{n-2}{4(n-1)} R_{g_0} u = K u^{\frac{n+2}{n-2}}, \quad \text{on } \mathbb{S}^n, \quad n \ge 3,$$
(1.1)

where R_g is the scalar curvature of g.

The linear operator on the left of (1.1) is known as the conformal Laplacian associated to the metric g_0 and is denoted as $P_1^{g_0}$. Another conformally covariant operator is

$$P_2^g = (-\Delta_g)^2 - \operatorname{div}_g(a_n R_g g + b_n Ric_g)d + \frac{n-4}{2}Q_n^g,$$

which was discovered by Paneitz, see [32] and [20]. Here Q_n^n , Ric_g are the standard Q-curvature and the Ricci curvature of g respectively, a_n , b_n are constants depending on n. P_1 and P_2 (with g being omitted when there is no ambiguity) are the first two terms of a sequence of conformally covariant elliptic operators $\{P_k\}$, which exists for all $k \in \mathbb{N}$ when n is odd, but only for $k \in \{1, \dots, n/2\}$ when n is even. The first construction of these operators was by Graham, Jenne, Masion and Sparling in [24]. Thus a natural question is: are there any conformally covariant pseudodifferential operators of noninteger orders? In [33], the author constructed an intrinsically defined, arbitrary real number order, conformally covariant pseudo-differential operator. In the work of Graham and Zworski [25], it was showed that P_k can be realized as the residues at $\gamma = k$ of a meromorphic family of scattering operators. In this point of view, a family of conformally covariant pseudodifferential operator.

In recent years, there are extensive works on the properties of the fractional Laplacian as non-local operators together with their applications to various problems, for example, [12,10,13,11,14] and so on. It is well known that $(-\Delta)^{\gamma}$ on \mathbb{R}^n with $\gamma \in (0,1)$ is a nonlocal operator. In the remarkable work of Caffarelli and Silvestre [12], the authors express this nonlocal operator as a generalized Dirichlet–Neumann map for an elliptic boundary value problem with local differential operators defined on \mathbb{R}^{n+1}_+ . And in the work of Chang and Gonzalez [15], the authors extended the work of [12] and characterized P^g_{γ} as such a Dirichlet-to-Neumann operator on a conformally compact Einstein manifold.

The operator P_{γ}^{g} with $\gamma \in (0, \frac{n}{2})$ has the following conformally covariant property: if $g = v^{\frac{4}{n-2\gamma}}g_0$, then

$$P^{g_0}_{\gamma}(vf) = v^{\frac{n+2\gamma}{n-2\gamma}} P^g_{\gamma}(f) \tag{1.2}$$

for any smooth function f, see [15]. Generalizing the formula for scalar curvature and the Paneitz Branson Q-curvature, the Q-curvature for g of order γ is defined as

$$Q^g_\gamma = P^g_\gamma(1).$$

In this paper, we are interested in the fractional Nirenberg problem on the standard sphere \mathbb{S}^n . That is to say, we want to find a representation g of the conformal class $[g_0]$

4044

Download English Version:

https://daneshyari.com/en/article/4589675

Download Persian Version:

https://daneshyari.com/article/4589675

Daneshyari.com