

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Entropy dissipation estimates for the Landau equation in the Coulomb case and applications

L. Desvillettes

 $CMLA,\ ENS$ Cachan, $CNRS,\ 61,\ avenue\ du\ Président\ Wilson,\ F-94230$ Cachan, France

ARTICLE INFO

Article history: Received 1 November 2014 Accepted 12 May 2015 Available online 18 June 2015 Communicated by Cédric Villani

Keywords: Landau equation Landau operator Entropy dissipation Coulomb interaction

ABSTRACT

We present in this paper an estimate which bounds from below the entropy dissipation D(f) of the Landau operator with Coulomb interaction by a weighted H^1 norm of the square root of f. As a consequence, we get a weighted $L_t^1(L_v^3)$ estimate for the solutions of the spatially homogeneous Landau equation with Coulomb interaction, and the propagation of L^1 moments of any order for this equation. We also present an application of our estimate to the Landau equation with (moderately) soft potentials, providing thus a new proof of some recent results of [30].

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and main result

1.1. Description of the Landau equation

We recall the spatially homogeneous Landau equation of plasma theory (cf. [8,22]),

$$\frac{\partial f}{\partial t}(t,v) = Q(f,f)(t,v), \qquad v \in \mathbb{R}^N, \quad t \ge 0, \tag{1}$$

E-mail address: desville@cmla.ens-cachan.fr.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jfa.2015.05.009} 0022\mbox{-}1236/\mbox{©}\ 2015 \mbox{ Elsevier Inc. All rights reserved.}$

where f := f(t, v) is a nonnegative function representing the number of particles which at time t move with velocity v, and Q is a nonlinear quadratic operator modeling the collisions between those particles. It acts on the variable v only, and writes

$$Q(f,f)(v) = \sum_{i=1}^{N} \frac{\partial}{\partial v_i} \left\{ \int\limits_{\mathbb{R}^N} \sum_{j=1}^{N} a_{ij}(v-w) \left(f(w) \frac{\partial f}{\partial v_j}(v) - f(v) \frac{\partial f}{\partial v_j}(w) \right) dw \right\}.$$
 (2)

We also introduce the (nonnegative) initial datum $f_{in} : \mathbb{R}^N \to \mathbb{R}_+$:

$$\forall v \in \mathbb{R}^N, \qquad f(0, v) = f_{in}(v). \tag{3}$$

Here, $(a_{ij}(z))_{ij}$ $(z \in \mathbb{R}^N)$ is given by

$$a_{ij}(z) = \Pi_{ij}(z)\,\psi(|z|),\tag{4}$$

where ψ is a nonnegative function, and

$$\Pi_{ij}(z) = \delta_{ij} - \frac{z_i z_j}{|z|^2} \tag{5}$$

is the i,j-component of the orthogonal projection Π onto $z^{\perp}:=\{y/y\cdot z=0\}.$

It is customary to define the following functions:

$$b_i(z) = \sum_{j=1}^N \partial_j a_{ij}(z) = -(N-1) \frac{z_i}{|z|^2} \psi(|z|), \tag{6}$$

$$c(z) = \sum_{i=1}^{N} \sum_{j=1}^{N} \partial_{ij} a_{ij}(z) = -(N-1) \left((N-2) \frac{\psi(|z|)}{|z|^2} + \frac{\psi'(|z|)}{|z|} \right).$$
(7)

The computation above must be adapted when ψ has strong singularities (for example, in the important case when N = 3 and $\psi(|z|) = |z|^{-1}$, corresponding to the Coulomb interaction, one finds $c(z) = -8\pi \delta_0$).

Using those functions, the Landau operator can be written (at the formal level) as a (conservative or non-conservative) nonlinear (quadratic) parabolic equation with nonlocal coefficients, indeed

$$Q(f,f) = \sum_{i=1}^{N} \frac{\partial}{\partial v_i} \left(\sum_{j=1}^{N} (a_{ij} * f) \frac{\partial f}{\partial v_j} - (b_i * f) f \right), \tag{8}$$

and

1360

Download English Version:

https://daneshyari.com/en/article/4589739

Download Persian Version:

https://daneshyari.com/article/4589739

Daneshyari.com