
Lightweight query-based analysis of workflow process dependencies

W. Dai a, D. Covvey b, P. Alencar a,*, D. Cowan a

a University of Waterloo, David R. Cheriton School of Computer Science, Waterloo, Ontario, Canada N2L3G1
b University of Waterloo, Department of Biology, School of Optometry, Waterloo, Ontario, Canada N2L3G1

a r t i c l e i n f o

Article history:
Received 27 November 2006
Received in revised form 27 November 2008
Accepted 8 December 2008
Available online 3 February 2009

Keywords:
Software process
Workflows
Software change
Dependency analysis
Logic programming
Software maintenance

a b s t r a c t

Dependency analysis is important in all of the stages of workflow processes. Workflow elements and fea-
tures are always difficult to track and as their changes often lead to code tangling as a result of the addi-
tion of new requirements and programs. This mosaic quality complicates program comprehension and
maintenance. Therefore, an appropriate analysis will help us to identify the potentially affected entities
if changes occur. In this paper we present an approach for the lightweight analysis of workflow process
dependencies, which include routing, data and roles dependencies. The model is represented as a knowl-
edge base using a logic programming language, Prolog. We develop a set of query rules that can be
applied to the well-defined knowledge base at both activity and process levels to retrieve the potentially
affected entities. Finally, we use a case study of workflow processes in the healthcare domain to show
how our dependency analysis approach works.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Like any other system, a workflow process is composed of dif-
ferent kinds of components or entities. These entities play different
roles in a workflow process and they also interact with each other
in all aspects. That is, entities in a system are not independent of
each other and there always are relationships among these entities
directly or indirectly. One of the most commonly identified rela-
tionships is a dependency relationship, which means an entity de-
pends on other entities. This fact naturally leads to a requirement
in system’s analysis, i.e., dependency analysis.

Our work in this paper is about the change impact analysis of
workflow process through dependency analysis. Our contributions
include a multi-dimensional workflow process dependency model
that involves critical aspects of dependency relationships existing
in workflow processes: routing, data and role dependencies. We
then formally represent this model by a logic programming
language, that is, Prolog, through a well-defined knowledge base.
Finally, we develop an effective tool-supported approach, the use
of query rules, to identify the potentially affected entities in the
process analysis domain.

1.1. Motivation and related work

In the real world, there are numerous causes of changes to
existing workflow processes (Allen, 2001; Workflow Management
Coalition, 1999, 1995, http://www.wfmc.org). For example, the
modification of laws or regulations may require the workflow pro-
cess to be changed to comply with the new laws or regulations;
new medical or healthcare knowledge may require healthcare pro-
viders to make corresponding changes in their health service pro-
cess implementations; new technologies may be introduced into
business processes (Ader, 2003; Kappel et al., 2000; Loos and Fet-
tke, 2001; Reijers, 2003), which replace the jobs previously done
by humans to increase efficiency; new systems may be deployed
to upgrade old ones in current workflow processes and in the con-
text of workflow management systems (Becker et al., 1806; Choun-
tas et al., 2003; Cicekli, 1999; Endl and Meyer, 1999; Kafeza et al.,
2001; Millie Kwan and Balasubramanian, 1997; Mohan et al., 2002;
Ren et al., 1999), and so on.

Regarding change, typically it can occur in several states of a
process life cycle: during the design, reengineering or redesign,
and maintenance of the process. During the design stage, change
is usually driven by the customer requirements, as typical in sys-
tem and software design domains. On the other hand, after a pro-
cess is designed and deployed in a specific domain, sometimes the
process may need reengineering (e.g., process reengineering
(Fitzgerald and Siddiqui, 2002; Weerakkody and Currie, 2003)).
Further, in order to make processes satisfy new expectations and
requirements such as efficiency and effectiveness, modifications

0164-1212/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2008.12.050

* Corresponding author. Tel.: +1 519 8851211x33944.
E-mail addresses: wdai@cs.uwaterloo.ca (W. Dai), dcovvey@csg.uwaterloo.ca

(D. Covvey), palencar@cs.uwaterloo.ca (P. Alencar), dcowan@csg.uwaterloo.ca
(D. Cowan).

The Journal of Systems and Software 82 (2009) 915–931

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss

mailto:wdai@cs.uwaterloo.ca
mailto:dcovvey@csg.uwaterloo.ca
mailto:palencar@cs.uwaterloo.ca
mailto:dcowan@csg.uwaterloo.ca
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


to an existing process may be required during workflow process
maintenance.

As a result of changes to workflows, there could be impacts on
other activities and processes if some worflow activities or pro-
cesses are modified. For example, if data produced by a preceding
activity are for any reason not available, the activities depending
on this activity cannot be activated. This may lead to the whole
process not being executed.

Since these changes will continue during the entire process life
cycle, an analysis is needed when we handle the impacts of
changes at different stages and levels. Moreover, given these exam-
ples, and the fact that there often is a complex dependency rela-
tionship among workflow processes and activities, we think a
workflow Process Impact Analysis (PIA) is an effective way to pre-
dict what kinds of impacts we will have. Through PIA, we can iden-
tify the affected activities and processes and adapt our process
appropriately to satisfy new requirements. In addition to this,
new business and workflow processes are being deployed every-
where in order to deliver competitive services to customers or cli-
ents. Our objective is to help organizations save effort and time,
where the alternative can be business failure. It is for this reason
we propose dependency analysis.

1.2. Related work on impact analysis

Workflow process research has existed for more than 30 years
and is gaining increasing attention from both industry and acad-
emy. However, we find that little work has been done on workflow
process impact analysis. Dai et al. (2004), Reijers (2003) have cate-
gorized current workflow process research into the following areas:
workflow modeling and validation, workflow performance analysis,
and process reengineering. Another area of workflow research ad-
dresses the design of workflow management systems, which pro-
vide runtime environments for workflow execution. Even the
dependency relationships within and among workflow processes
have been identified in Ajila (1995), Adam et al. (1998), Chountas
et al. (2003), Chun et al. (2002), Eder et al. (1999a), Eder et al.
(1999b), and Kappel et al. (1998). However, these authors focus
on workflow modeling or representation, and most of their depen-
dency relationships are limited to process structure dependency,
i.e., control or routing dependency. We also notice that these struc-
ture dependency relationships are limited to intra-dependency
without consideration of inter-dependency, as in our example
scenario. We can see the limitation of focus to process structure
dependency leads to an incomplete understanding of dependen-
cies. In another paper, Kim (2003) introduces a dependency analy-
sis framework consisting of four separate dependency nets, i.e.,
activity, role, data and actor. However, the goal of this framework
is not to deal with changes to processes and the analysis of their im-
pacts, but rather to generate a set of ‘‘transition conditions” that la-
ter are deployed in a distributed workflow enactment system, i.e., a
management system for process execution.

Although there are few references for workflow impact and
dependency analysis, we can take advantage of methodologies
and techniques widely applied in software impact analysis, as we
realize that a workflow process and a software system share many
common characteristics. For example, a software method built on
another one is like a complex activity composed of simple ones;
interaction between different applications or classes is like interac-
tions among activities or processes; a branch path in code is like
parallel control flow; and software application deployment and
execution is like process deployment and execution. Actually we
can treat a workflow process as a variant of a software application.
From this point of view, we believe that the workflow process im-
pact analysis deserves the same attention in workflow process re-
search as impact analysis in software research.

1.2.1. Software impact analysis
Software impact analysis is often used to assess the effects of a

change on a system after that change has been made. However, a
more proactive approach uses impact analysis to predict the effects
of change before it is instantiated (Bohner, 2003; Boher and Arnold,
1996). In fact, currently the main goal of impact analysis is to iden-
tify the software products and entities affected by proposed
changes and to produce a list of entities that should be addressed
during the proposed change process. As a result, we can evaluate
the consequences of planned changes as well as the trade-offs
among the approaches to implement the changes. Finally, we de-
cide whether or not to make the changes, or we find other ways
to make the changes based on our evaluation.

Most researchers follow the partitions in Boher and Arnold
(1996) which classifies impact analysis techniques into two broad
categories: dependency analysis and traceability analysis. For
dependency analysis, tools are developed to detect and capture
dependency information in the system source code artifacts. It in-
cludes three subcategories: data, control, and component depen-
dency relationships. Among these relationships, data
dependencies are relationships among program statements that
define or use data. That is, the data dependence exists when a
statement provides a value used by another statement in a pro-
gram. Control dependencies are relationships among program
statements that control program execution, while component
dependencies refer to the general relationships among source-code
components such as modules and files. Traceability analysis gener-
ally is manual work that focuses on modeling dependencies from
the perspectives of software engineering environments and docu-
mentation systems that contain varied levels of software informa-
tion. Examples include requirements traceability that identifies
parts of the software that may change with changed requirements,
software documentation traceability that identifies the component
relationships through the use of a document repository, and pro-
ject information database traceability that provides database-
query mechanisms to help software engineers determine the po-
tential impacts of changes based on the project management data-
base. Some document management systems have been developed
to assist this analysis, e.g., document browsers. Although depen-
dency analysis (Ajila, 1995; Deruelle et al., 1873; Fisler et al.,
2005; Law and Rothermel, 2003; Moonen, 2002; Ryder and Tip,
2001) and traceability analysis (Arango et al., 1993; Baniassad
and Clarke, 2004; Knethen, 2001; Marcus and Maletic, 2003) can
be used separately, they also can be used together to achieve an
analysis goal as in Lindvall and Sandahl (1998).

1.2.2. Dependency analysis
As an effective and proven methodology, dependency analysis

has been the most mature technique available in impact analysis.
The dependency relationships are typically represented as graphs
or tables that assist people in understanding the dependencies.
Dependencies are stored in a dependency graph in which usually
each node represents an entity and each directed edge represents
a dependency relationship between entities (Boher and Arnold,
1996). On the other hand, we can see that the procedure to identify
the affected entities, the types of changes, and the effects of a
change, is time consuming and costly if handled manually as the
analysis domain may contain many entities and have various
dependency relationships at different levels. To deal with this
problem, researchers have developed various query or lookup
mechanisms that usually are associated with the dependency rep-
resentation, which provides a foundation for the query. These
query mechanisms enable users to select the types of dependen-
cies to be analyzed from the identified dependency relationships
and infer the affected entities (Ajila, 1995; Boher and Arnold,
1996; Deruelle et al., 1873; Fisler et al., 2005; Robillard and Mur-

916 W. Dai et al. / The Journal of Systems and Software 82 (2009) 915–931



Download English Version:

https://daneshyari.com/en/article/458976

Download Persian Version:

https://daneshyari.com/article/458976

Daneshyari.com

https://daneshyari.com/en/article/458976
https://daneshyari.com/article/458976
https://daneshyari.com

