

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Entropy dissipation estimates for the linear Boltzmann operator

Marzia Bisi^a, José A. Cañizo^{b,*}, Bertrand Lods^c

- ^a Dipartimento di Matematica e Informatica, Università di Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy
- ^b School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- ^c Università degli Studi di Torino & Collegio Carlo Alberto, Department of Economics and Statistics, Corso Unione Sovietica, 218/bis, 10134 Torino, Italy

ARTICLE INFO

Article history: Received 6 May 2014 Accepted 1 May 2015 Available online 16 May 2015 Communicated by Cédric Villani

Keywords: Entropy inequalities Boltzmann equation Logarithmic Sobolev inequalities Kinetic equations

ABSTRACT

We prove a linear inequality between the entropy and entropy dissipation functionals for the linear Boltzmann operator (with a Maxwellian equilibrium background). This provides a positive answer to the analogue of Cercignani's conjecture for this linear collision operator. Our result covers the physically relevant case of hard-spheres interactions as well as Maxwellian kernels, both with and without a cut-off assumption. For Maxwellian kernels, the proof of the inequality is surprisingly simple and relies on a general estimate of the entropy of the gain operator due to [27,32]. For more general kernels, the proof relies on a comparison principle. Finally, we also show that in the grazing collision limit our results allow to recover known logarithmic Sobolev inequalities.

Crown Copyright © 2015 Published by Elsevier Inc. All rights reserved.

Contents

E-mail addresses: marzia.bisi@unipr.it (M. Bisi), j.a.canizo@bham.ac.uk (J.A. Cañizo), bertrand.lods@unito.it (B. Lods).

 $[\]ast$ Corresponding author.

	1.1.	Setting of the problem and main result	1029
	1.2.	Link to logarithmic Sobolev inequalities	1035
	1.3.	Method of proof	1037
	1.4.	Structure of the paper	1038
2.	Inequa	alities for Maxwellian collision kernels	1038
3.	Inequa	alities for non-Maxwellian collision kernels	1043
	3.1.	Comparison of dissipations for general kernels	1043
	3.2.	Application to hard-potential interactions	1047
4.	Some	applications	1051
	4.1.	Speed of convergence to equilibrium for the linear Boltzmann equation	1051
	4.2.	Trend to equilibrium for the nonlinear Boltzmann equation with particle bath	1052
5.	Grazing collisions limit and logarithmic Sobolev inequalities		1053
	5.1.	The asymptotics of grazing collisions	1053
	5.2.	Logarithmic Sobolev inequality	1057
	5.3.	Entropy dissipation for grazing collisions kernels	1060
Acknowledgments		1063	
Appendix A. Proof of Theorem 1.3		1063	
Appe	ndix B.	Bakry–Émery criterion for hard-spheres interactions	1065
References			1068

1. Introduction

1.1. Setting of the problem and main result

The use of Lyapunov functionals is a well-known technique to study the asymptotic behavior of dynamical systems, and in the theory of the Boltzmann equation and related models it is now a classical tool. For the nonlinear, spatially homogeneous Boltzmann equation

$$\partial_t f = \mathcal{Q}(f, f), \qquad f(0, v) = f_0(v), \qquad v \in \mathbb{R}^d, \ t \ge 0, \tag{1.1}$$

posed for a function f = f(t, v) depending on $t \ge 0$ and $v \in \mathbb{R}^d$, it is a well-known fact that f(t, v) converges (as $t \to \infty$) towards the Maxwellian distribution M_f with same mass, momentum and energy as f_0 ,

$$M_f(v) = \frac{\varrho_f}{(2\pi E_f)^{d/2}} \exp\left(-\frac{|v - \mathbf{u}_f|^2}{2 E_f}\right), \quad v \in \mathbb{R}^d,$$

where

$$\varrho_f = \int_{\mathbb{R}^d} f(t, v) \, \mathrm{d}v = \int_{\mathbb{R}^d} f_0(v) \, \mathrm{d}v,$$

$$\varrho_f \mathbf{u}_f = \int_{\mathbb{R}^d} f(t, v) v \, \mathrm{d}v = \int_{\mathbb{R}^d} f_0(v) v \, \mathrm{d}v,$$

$$d \, \varrho_f E_f = \int_{\mathbb{R}^d} f(t, v) |v - \mathbf{u}_f|^2 \, \mathrm{d}v = \int_{\mathbb{R}^d} f_0(v) |v - \mathbf{u}_f|^2 \, \mathrm{d}v$$
for all $t \ge 0$.

Notice that Eq. (1.1) conserves density, momentum and kinetic energy which explains why the above quantities ϱ_f , \mathbf{u}_f and E_f are constant in time. The *Shannon–Boltzmann* relative entropy of f with respect to the Maxwellian distribution M_f

Download English Version:

https://daneshyari.com/en/article/4589766

Download Persian Version:

https://daneshyari.com/article/4589766

<u>Daneshyari.com</u>