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We prove a linear inequality between the entropy and
entropy dissipation functionals for the linear Boltzmann
operator (with a Maxwellian equilibrium background). This
provides a positive answer to the analogue of Cercignani’s
conjecture for this linear collision operator. Our result covers
the physically relevant case of hard-spheres interactions as
well as Maxwellian kernels, both with and without a cut-
off assumption. For Maxwellian kernels, the proof of the
inequality is surprisingly simple and relies on a general
estimate of the entropy of the gain operator due to [27,32].
For more general kernels, the proof relies on a comparison
principle. Finally, we also show that in the grazing collision
limit our results allow to recover known logarithmic Sobolev
inequalities.
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1. Introduction
1.1. Setting of the problem and main result

The use of Lyapunov functionals is a well-known technique to study the asymptotic
behavior of dynamical systems, and in the theory of the Boltzmann equation and related
models it is now a classical tool. For the nonlinear, spatially homogeneous Boltzmann
equation

atf: Q(f,f)7 f(o’v):fO(v)v UERd’tZO’ (1'1)

posed for a function f = f(¢,v) depending on ¢t > 0 and v € R?, it is a well-known fact
that f(t,v) converges (as t — o0o) towards the Maxwellian distribution M; with same
mass, momentum and energy as fy,

of

M(v) = ——=—exp —M v € RY
! (2r Ef)i/2 2B, )’ ’

where

of = fRd f(ta ’l)) dv = fRd fo(’()) d’U,
opur = [oq f(t,v)vdo = [54 fo(v)vdo, for all ¢ > 0.
dosEr = [pa f(t,0)lv —ugPdv = [5q fo(v) [v —up[*dv
Notice that Eq. (1.1) conserves density, momentum and kinetic energy which explains

why the above quantities pf, uy and E; are constant in time. The Shannon-Boltzmann
relative entropy of f with respect to the Maxwellian distribution Mg
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