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Let Tf denote the Toeplitz operator with symbol function f
on the Bergman space L2

a(B, dv) of the unit ball in Cn. It 
is a natural problem in the theory of Toeplitz operators to 
determine the norm closure of the set {Tf : f ∈ L∞(B, dv)}
in B(L2

a(B, dv)). We show that the norm closure of {Tf : f ∈
L∞(B, dv)} actually coincides with the Toeplitz algebra T , 
i.e., the C∗-algebra generated by {Tf : f ∈ L∞(B, dv)}. 
A key ingredient in the proof is the class of weakly localized 
operators recently introduced by Isralowitz, Mitkovski and 
Wick. Our approach simultaneously gives us the somewhat 
surprising result that T also coincides with the C∗-algebra 
generated by the class of weakly localized operators.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We begin with a discussion of localized operators. Let B denote the open unit ball 
{z ∈ Cn : |z| < 1} in Cn. The Bergman metric on B is given by the formula

β(z, w) = 1
2 log 1 + |ϕz(w)|

1 − |ϕz(w)| , z, w ∈ B,
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where ϕz is the Möbius transform of the ball given on [10, page 25]. For each z ∈ B and 
each r > 0, the corresponding β-ball will be denoted by D(z, r). That is,

D(z, r) = {w ∈ B : β(z, w) < r}.

Let dv be the volume measure on B with the normalization v(B) = 1. Then the formula

dλ(z) = dv(z)
(1 − |z|2)n+1

gives us the standard Möbius-invariant measure on B.
Recall that the Bergman space L2

a(B, dv) is the subspace

{h ∈ L2(B, dv) : h is analytic on B}

of L2(B, dv). It is well known that the normalized reproducing kernel for the Bergman 
space is given by the formula

kz(ζ) = (1 − |z|2)(n+1)/2

(1 − 〈ζ, z〉)n+1 , z, ζ ∈ B. (1.1)

It was first discovered in [14] that localization is a powerful tool for analyzing operators 
on reproducing-kernel Hilbert spaces (more on this in Section 4). Recently, this idea was 
further explored in [6]. More specifically, in [6] Isralowitz, Mitkovski and Wick introduced 
the notion of weakly localized operators on the Bergman space. Below we give a slightly 
more refined version of their definition. Our refinement lies in the realization that we 
can define a class of localized operators for each given localization parameter s.

Definition 1.1. Let a positive number (n − 1)/(n + 1) < s < 1 be given.

(a) A bounded operator B on the Bergman space L2
a(B, dv) is said to be s-weakly 

localized if it satisfies the conditions

sup
z∈B

∫
|〈Bkz, kw〉|

(
1 − |w|2
1 − |z|2

)s(n+1)/2

dλ(w) < ∞,

sup
z∈B

∫
|〈B∗kz, kw〉|

(
1 − |w|2
1 − |z|2

)s(n+1)/2

dλ(w) < ∞,

lim
r→∞

sup
z∈B

∫
B\D(z,r)

|〈Bkz, kw〉|
(

1 − |w|2
1 − |z|2

)s(n+1)/2

dλ(w) = 0 and

lim
r→∞

sup
z∈B

∫
B\D(z,r)

|〈B∗kz, kw〉|
(

1 − |w|2
1 − |z|2

)s(n+1)/2

dλ(w) = 0.
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