

Contents lists available at ScienceDirect

Journal of Functional Analysis

Bessel functions, heat kernel and the conical Kähler–Ricci flow

Xiuxiong Chen^a, Yuanqi Wang^{b,*,1}

^a Department of Mathematics, Stony Brook University, NY, USA

ARTICLE INFO

Article history: Received 7 October 2014 Accepted 22 January 2015 Available online 19 March 2015 Communicated by S. Brendle

Keywords: Local existence conic Ricci flow Bessel functions Heat kernel Schauder estimates

ABSTRACT

Following Donaldson's openness theorem on deforming a conical Kähler–Einstein metric, we prove a parabolic Schauder-type estimate with respect to conical metrics. As a corollary, we show that the conical Kähler–Ricci flow exists for short time. The key is to establish the relevant heat kernel estimates, where we use the Weber formula on Bessel function of the second kind and Carslaw's heat kernel representation in [8].

 $\ \, \odot$ 2015 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	552
2.	Setting up of the main problems and more general statements	561
3.	Proof of Theorem 1.2 and Theorem 1.7 assuming Theorem 1.8	567
4.	Representation formulas for the heat kernel	570
5.	Hölder estimate of the singular integrals and proof of the main Schauder estimates in	
	Theorem 1.8	577
6.	Heat kernel and Bessel functions of the second kind	593

^b Department of Mathematics, University of California at Santa Barbara, Santa Barbara, CA, USA

^{*} Corresponding author.

E-mail addresses: xiu@math.sunysb.edu (X. Chen), wangyuanqi@math.ucsb.edu, ywang@scgp.stonybrook.edu (Y. Wang).

¹ Present address: Simons Center for Geometry and Physics (was at UC Santa Barbara when this work was done).

7.	Local estimates for the heat kernel	596
8.	Behaviors of the heat kernel near the singular set	602
9.	Asymptotic behaviors of the heat kernel	610
10.	Decay estimates for the heat kernel	621
Ackno	wledgments	629
Apper	ndix A. Some lower order estimates	629
Refere	ences	631

1. Introduction

Fix $\beta \in (0,1)$. The simplest conic metric is written as

$$\eta_{\beta} = dr^2 + \beta^2 r^2 d\theta^2, \quad \theta \in [0, 2\pi), \ r \in [0, \infty).$$
(1)

This gives a metric on the complex plane \mathbb{C} , with a cone point of angle $2\beta\pi$ at the origin. This cone is obtained by attaching the two sides of a wedge of angle $2\beta\pi$ (see Fig. 1). In particular, η_1 is exactly the Euclidean metric.

Using the holomorphic coordinate $z_0 = r^{\frac{1}{\beta}} e^{\sqrt{-1}\theta}$, we get

$$\eta_{\beta} = \frac{\beta^2}{|z_0|^{2-2\beta}} dz_0 \otimes d\bar{z}_0.$$

The Kähler (sympletic) form of η_{β} is $\frac{\beta^2}{|z_0|^{2-2\beta}}\sqrt{-1}dz_0 \wedge d\bar{z}_0$.

Based on the above low dimensional pictures, we can consider conic metrics in general dimensions which are singular along analytic hypersurfaces. The model cone metric over $\mathbb{C} \times \mathbb{C}^{n-1}$ which is singular along the analytic hypersurface $\{0\} \times \mathbb{C}^{n-1}$ is

$$\omega_{\beta} = \frac{\beta^2}{|z_0|^{2-2\beta}} \sqrt{-1} dz_0 \wedge d\bar{z}_0 + \sum_{j=1}^{n-1} \sqrt{-1} dz_j \wedge d\bar{z}_j, \quad n \ge 1.$$
 (2)

Let m = 2n - 2, then the metric tensor of ω_{β} in the polar coordinates is

$$g_{\beta} = dr^2 + \beta^2 r^2 d\theta^2 + g_{\mathbb{R}^m},\tag{3}$$

where $g_{\mathbb{R}^m} = \sum_{i=1}^m ds_i^2$. Henceforth we will mainly use the notation \mathbb{R}^m instead of \mathbb{C}^n , as our Schauder estimates are with respect to the real setting.

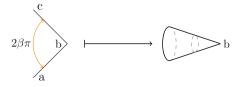


Fig. 1. The simplest cone.

Download English Version:

https://daneshyari.com/en/article/4589816

Download Persian Version:

https://daneshyari.com/article/4589816

<u>Daneshyari.com</u>