Wavelet coorbit spaces viewed as decomposition spaces

Hartmut Führ, Felix Voigtlaender *
Lehrstuhl A für Mathematik, RWTH Aachen, 52056 Aachen, Germany

A R T I C L E I N F O

Article history:

Received 23 June 2014
Accepted 27 March 2015
Available online 27 April 2015
Communicated by P. Biane

MSC:

42B35
42 C 40
46 F 05

Keywords:
Coorbit spaces
Decomposition spaces
Function spaces
Anisotropic wavelet systems

Abstract

In this paper we show that the Fourier transform induces an isomorphism between the coorbit spaces defined by Feichtinger and Gröchenig of the mixed, weighted Lebesgue spaces $L_{v}^{p, q}$ with respect to the quasi-regular representation of a semi-direct product $\mathbb{R}^{d} \rtimes H$ with suitably chosen dilation group H, and certain decomposition spaces $\mathcal{D}\left(\mathcal{Q}, L^{p}, \ell_{u}^{q}\right)$ (essentially as introduced by Feichtinger and Gröbner) where the localized "parts" of a function are measured in the $\mathcal{F} L^{p}$-norm. This equivalence is useful in several ways: It provides access to a Fourier-analytic understanding of wavelet coorbit spaces, and it allows to discuss coorbit spaces associated to different dilation groups in a common framework. As an illustration of these points, we include a short discussion of dilation invariance properties of coorbit spaces associated to different types of dilation groups.

© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

There exist several methods in the literature for the construction of higher-dimensional wavelet systems. A rather general class of constructions follows the initial inception of the continuous wavelet transform in [21] and uses the language of group representations $[26,1,16,24]$: Picking a suitable matrix group $H \leq G L\left(\mathbb{R}^{d}\right)$, the dilation group, one defines the associated semidirect product $G=\mathbb{R}^{d} \rtimes H$. This group acts on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$ via the (unitary) quasi-regular representation π defined by

$$
(\pi(x, h) f)(y)=|\operatorname{det}(h)|^{-1 / 2} f\left(h^{-1}(y-x)\right), \quad(x, h) \in \mathbb{R}^{d} \times H
$$

The associated continuous wavelet transform of a signal $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{d}\right)$ is then obtained by picking a suitable mother wavelet $\psi \in \mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$, and letting

$$
\begin{equation*}
W_{\psi} f: G \rightarrow \mathbb{C},(x, h) \mapsto\langle f, \pi(x, h) \psi\rangle . \tag{1.1}
\end{equation*}
$$

A wavelet ψ is called admissible if the operator W_{ψ} is (a multiple of) an isometry as a map into $\mathrm{L}^{2}\left(G, \mu_{G}\right)$, where μ_{G} denotes a left Haar measure on G. By definition we thus have for admissible vectors ψ that

$$
\forall f \in \mathrm{~L}^{2}\left(\mathbb{R}^{d}\right):\|f\|_{2}^{2}=\frac{1}{C_{\psi}} \cdot \int_{H} \int_{\mathbb{R}^{d}}\left|W_{\psi} f(x, h)\right|^{2} \mathrm{~d} x \frac{\mathrm{~d} h}{|\operatorname{det}(h)|}
$$

alternatively expressed in the weak-sense inversion formula

$$
f=\frac{1}{C_{\psi}} \cdot \int_{H} \int_{\mathbb{R}^{d}} W_{\psi} f(x, h) \cdot \pi(x, h) \psi \mathrm{d} x \frac{\mathrm{~d} h}{|\operatorname{det}(h)|}
$$

An alternative construction of wavelet systems, with somewhat less structure but higher design flexibility, is the semi-discrete approach described as follows: Pick a discretely labeled quadratic partition of unity $\left(\widehat{\psi}_{i}\right)_{i \in I}$ in frequency domain, i.e. a family of functions satisfying

$$
\begin{equation*}
\forall_{\text {a.e. }} \xi \in \mathbb{R}^{d}: \sum_{i \in I}\left|\widehat{\psi}_{i}(\xi)\right|^{2}=1 \tag{1.2}
\end{equation*}
$$

and consider the system of all translates of the inverse Fourier transforms $\psi_{i}=\mathcal{F}^{-1}\left(\widehat{\psi}_{i}\right)$. This system is a (continuously labeled) tight frame, i.e.

$$
\forall f \in \mathrm{~L}^{2}\left(\mathbb{R}^{d}\right):\|f\|_{2}^{2}=\sum_{i \in I_{\mathbb{R}^{d}}} \int\left|\left\langle f, L_{x} \psi_{i}\right\rangle\right|^{2} \mathrm{~d} x
$$

https://daneshyari.com/en/article/4589821

Download Persian Version:

https://daneshyari.com/article/4589821

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: fuehr@matha.rwth-aachen.de (H. Führ), felix.voigtlaender@matha.rwth-aachen.de (F. Voigtlaender).

