

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Discrete components in restriction of unitary representations of rank one semisimple Lie groups $\stackrel{\Rightarrow}{\Rightarrow}$

Genkai Zhang

Mathematical Sciences, Chalmers University of Technology and Mathematical Sciences, Göteborg University, SE-412 96 Göteborg, Sweden

ARTICLE INFO

Article history: Received 9 April 2013 Accepted 28 September 2015 Available online 9 October 2015 Communicated by P. Delorme

Keywords: Semisimple Lie groups Representations Complementary series Irreducible decompositions

ABSTRACT

We consider spherical principal series representations of the semisimple Lie group of rank one $G = SO(n, 1; \mathbb{K})$, $\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}$. There is a family of unitarizable representations π_{ν} of G for ν in an interval on \mathbb{R} , the so-called complementary series, and subquotients or subrepresentations of G for ν being negative integers. We consider the restriction of (π_{ν}, G) under the subgroup $H = SO(n-1, 1; \mathbb{K})$. We prove the appearing of discrete components. The corresponding results for the exceptional Lie group $F_{4(-20)}$ and its subgroup $Spin_0(8, 1)$ are also obtained.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The study of direct components in the restriction to a subgroup $H \subset G$ of a representation (π, G) is one of major subjects in representation theory. Among representations of a semisimple Lie group G there are two somewhat opposite classes, the discrete series and the complementary series; the former appear in the decomposition of $L^2(G)$ and can be treated algebraically, whereas the latter do not contribute to the decomposition and

 $\label{eq:http://dx.doi.org/10.1016/j.jfa.2015.09.021} 0022\text{-}1236/ \ensuremath{\odot}\ 2015$ Elsevier Inc. All rights reserved.

^{*} Research partially supported by the Swedish Science Council (VR), Grant no. 621-2012-3814. *E-mail address:* genkai@chalmers.se.

their study involves more analytic issues. The study of restriction of discrete series representations has been studied intensively; see e.g. [18,28] and references therein. Motivated by some related questions of [2,3] Speh and Venkataramana [30] studied the restriction of a complementary series representation of SO(n, 1) under the subgroup SO(n-1, 1). It is proved there, for relatively small parameter ν (in our parametrization), the complementary series π_{ν} of SO(n-1, 1) appears discretely in the complementary series π_{ν} of SO(n, 1)with the same parameter ν . They construct the imbedding of the complementary series of SO(n-1, 1) into π_{ν} of SO(n, 1) by using non-compact realizations of the representations as spaces of distributions on Euclidean spaces and by extending distributions on \mathbb{R}^{n-2} to \mathbb{R}^{n-1} . Similar results are also obtained for complementary series of differential forms.

In the present paper we shall study the restriction, also called branching, of complementary series of G for all rank one Lie groups G with respect to a symmetric pair (G, H). More precisely we prove the appearance of discrete components for $G = SO(n, 1; \mathbb{K})$, $H = SO(n-1, 1; \mathbb{K})$, with $\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H}$ being the fields of real, complex, quaternion numbers, or for $G = F_{4(-20)}$ and $H = Spin_0(8, 1) \subset G$. We shall use the compact realization of the spherical principal series π_{ν} on the sphere S = K/M in \mathbb{F}^n . We prove that for appropriate small parameter ν the natural restriction map of functions on S in π_{ν} to the lower dimensional sphere S^{\flat} in \mathbb{F}^{n-1} defines a bounded operator onto a complementary series π_{ν}^{\flat} of H. The proof requires rather detailed study of the restriction to $S^{\flat} \subset S$ of spherical harmonics on S.

The representations π_{ν} for certain integers ν have also unitarizable subquotients or subrepresentations; some of them are discrete series representations of G. We shall find also irreducible components for these representations under the subgroup H. One easiest case is the subrepresentation π_0^{\pm} (or π_{2n+2}^{\pm} as quotient) of the group SU(n, 1). The space π_0^{\pm} consists of holomorphic respectively antiholomorphic polynomials on \mathbb{C}^n modulo constant functions. It can also be treated by using the analytic continuation of scalar holomorphic discrete series at the reducible point [8], and some general decomposition results have been obtained in [19].

The main results in this paper are summarized in the following theorem, the precise statements being given in Theorems 3.6, 3.9 and 4.4; the parametrization of the complementary series (G, π_{ν}) is done so that the unitary principal series of G appear for $\nu = \rho_G + it, t \in \mathbb{R}$, so that the complementary series appear for ν in a symmetric interval around ρ_G .

Theorem 1.1. Let (G, H) be the pair as above, $G = SO(n, 1; \mathbb{K})$, $H = SO(n - 1, 1; \mathbb{K})$ for $\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H}$, or $G = F_{4(-20)}$, and $H = Spin_0(8, 1) \subset G$. Let $\rho_G = d - 1 + \frac{d}{2}(n - 1)$ and $\rho_H = d - 1 + \frac{d}{2}(n - 2)$ be the corresponding half sums of positive roots, where $d = \dim_{\mathbb{R}} \mathbb{F} = 1, 2, 4$. Suppose (π_{ν}, G) is a complementary series representation of G. We can assume up to Weyl group symmetry that $\nu < \rho_G$.

(1) The restriction of (π_{ν}, G) on H contains a discrete component (π_{μ}^{\flat}, H) if $\nu < \rho_H$, and $\mu = \nu$ in our parameterization. Download English Version:

https://daneshyari.com/en/article/4589831

Download Persian Version:

https://daneshyari.com/article/4589831

Daneshyari.com