

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Essential normality, essential norms and hyperrigidity $\stackrel{\mbox{\tiny\scale}}{\sim}$

癯

Matthew Kennedy^a, Orr Moshe Shalit^b

 ^a School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
^b Department of Mathematics, Faculty of natural Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel

ARTICLE INFO

Article history: Received 15 July 2014 Accepted 6 March 2015 Available online 1 April 2015 Communicated by P. Biane

MSC: 47A13 47L30 46E22

Keywords: Essentially normal operators C*-envelope Drury-Arveson space von Neumann inequality

ABSTRACT

Let $S = (S_1, \ldots, S_d)$ denote the compression of the *d*-shift to the complement of a homogeneous ideal I of $\mathbb{C}[z_1,\ldots,z_d]$. Arveson conjectured that S is essentially normal. In this paper, we establish new results supporting this conjecture, and connect the notion of essential normality to the theory of the C*-envelope and the noncommutative Choquet boundary. The unital norm closed algebra \mathcal{B}_I generated by S_1, \ldots, S_d modulo the compact operators is shown to be completely isometrically isomorphic to the uniform algebra generated by polynomials on $\overline{V} := \overline{\mathcal{Z}(I) \cap \mathbb{B}_d}$, where $\mathcal{Z}(I)$ is the variety corresponding to I. Consequently, the essential norm of an element in \mathcal{B}_I is equal to the sup norm of its Gelfand transform, and the C^{*}-envelope of \mathcal{B}_I is identified as the algebra of continuous functions on $\overline{V} \cap \partial \mathbb{B}_d$, which means it is a complete invariant of the topology of the variety determined by I in the ball.

Motivated by this determination of the C*-envelope of \mathcal{B}_I , we suggest a new, more qualitative approach to the problem of essential normality. We prove the tuple S is essentially normal if and only if it is hyperrigid as the generating set of a C*-algebra, which is a property closely connected to Arveson's notion of a boundary representation.

 $^{^{*}}$ The first author is supported by a grant RGPIN 418585-2012 from the Natural Sciences and Engineering Research Council of Canada. The second author is partially supported by ISF Grant no. 474/12, by EU FP7/2007-2013 Grant no. 321749, and by GIF Grant no. 2297-2282.6/20.1.

E-mail addresses: mkennedy@math.carleton.ca (M. Kennedy), oshalit@math.bgu.ac.il (O.M. Shalit).

We show that most of our results hold in a much more general setting. In particular, for most of our results, the ideal I can be replaced by an arbitrary (not necessarily homogeneous) invariant subspace of the d-shift.

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction, notation and preliminaries

The purpose of this paper is to collect evidence supporting Arveson's conjecture on essential normality, and to connect the conjecture with the theory of the C*-envelope and the noncommutative Choquet boundary. Our results are of a nature quite different from other results on this conjecture, e.g., [4,5,14–17,19,21,25,26,34]; these previous results gave a full verification of the conjecture for limited classes of (typically homogeneous) ideals. Here, we shall present more limited results that hold for all homogeneous ideals, and for a large class of non-homogeneous ideals. Arveson's conjecture has several interesting and non-trivial consequences. We shall prove some of these consequences directly, thereby gathering evidence supporting the conjecture.

This work also connects to the ongoing effort to understand operator algebras arising from *subproduct systems* (see [12,13,22,23,36-38]). If we restrict attention to homogeneous ideals, then the algebras studied in this paper are precisely the algebras arising from commutative subproduct systems over \mathbb{N} , with finite dimensional Hilbert spaces as fibers.

1.1. Preliminaries

Throughout, $d \geq 2$ is a fixed integer, \mathbb{B}_d denotes the unit ball in \mathbb{C}^d , and $\mathbb{C}[z] = \mathbb{C}[z_1, \ldots, z_d]$ denotes the algebra of complex polynomials in d variables. Let E be a Hilbert space with orthonormal basis $\{e_1, \ldots, e_d\}$. Then we may identify the symmetric tensor algebra over E with $\mathbb{C}[z]$. Form the symmetric Fock space over E:

$$\mathcal{F}^+(E) = \mathbb{C} \oplus E \oplus E^2 \oplus \dots$$

The space $\mathcal{F}^+(E)$ is also called the Drury–Arveson space. It can be naturally identified as the reproducing kernel Hilbert space on the unit ball with reproducing kernel

$$k_w(z) = \frac{1}{1 - \langle z, w \rangle}, \quad w, z \in \mathbb{B}_d.$$

In this function-theoretic incarnation the Drury–Arveson space is usually denoted by H_d^2 , and we shall use this notation here. A third, equivalent, way of viewing this space is simply as the completion of $\mathbb{C}[z]$ under the inner product that makes monomials orthogonal and assigns to each monomial the norm Download English Version:

https://daneshyari.com/en/article/4589879

Download Persian Version:

https://daneshyari.com/article/4589879

Daneshyari.com