

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Sign-changing blow-up solutions for Hénon type elliptic equations with exponential nonlinearity

Teresa D'Aprile

Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00133 Roma, Italy

ARTICLE INFO

Article history: Received 10 August 2012 Accepted 12 February 2015 Available online 26 February 2015 Communicated by I. Rodnianski

MSC: 35B40 35J20 35J65

Keywords:
Hénon type equation
Blow-up solutions
Finite-dimensional reduction
Min-max argument

ABSTRACT

We study the existence of sign-changing solutions with multiple concentration to the following boundary value problem

$$-\Delta u = \varepsilon^2 |x|^{2\alpha} (e^u - e^{-u}) \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega,$$

where $\alpha > 0$, Ω is a smooth bounded domain in \mathbb{R}^2 containing the origin, $\varepsilon > 0$ is a small parameter. In particular we prove that if $\alpha \neq 1$ then a nodal solution exists with a number of mixed positive and negative blow-up points up to 4.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a smooth and bounded domain in \mathbb{R}^2 with $0 \in \Omega$. In this paper we are concerned with the existence and the asymptotic analysis when the parameter ε tends to 0 of solutions for the following Hénon type elliptic problem:

E-mail address: daprile@mat.uniroma2.it.

 $^{^{\}dot{x}}$ The author has been supported by the Italian PRIN Research Project 2009 Metodi variazionali e topologici nello studio dei fenomeni non lineari.

$$\begin{cases}
-\Delta u = \varepsilon^2 |x|^{2\alpha} (e^u - e^{-u}) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1.1)

Problem (1.1) together with the Liouville model

$$\begin{cases}
-\Delta u = \varepsilon^2 |x|^{2\alpha} e^u & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1.2)

is motivated by its links with the modeling of physical phenomenon. In particular, (1.1) and (1.2) arise in the study of vortices in a planar model of Euler flows (see [3,11]). In vortex theory the interest in constructing *blowing-up* solutions is related to relevant physical properties, in particular the presence of vortices with a strongly localized electromagnetic field.

The autonomous case, i.e. when $\alpha=0$, has been widely considered in literature. The asymptotic behavior of blowing-up family of solutions for the problem (1.2) can be referred to the papers [1,7,21–23,25]. More precisely, the analysis in these works yields that if u_{ε} is an unbounded family of solutions of (1.2) with $\alpha=0$ for which $\varepsilon^2 \int_{\Omega} e^{u_{\varepsilon}}$ is uniformly bounded, then there is an integer $N \geq 1$ such that

$$\varepsilon^2 \int_{\Omega} e^{u_{\varepsilon}} dx \to 8\pi N \text{ as } \varepsilon \to 0.$$

Moreover there are different points $\xi_1^{\varepsilon}, \dots, \xi_N^{\varepsilon} \in \Omega$, which remain uniformly distant from the boundary $\partial \Omega$ and from one another such that

$$\varepsilon^2 e^{u_{\varepsilon}} - 8\pi \sum_{i=1}^N \delta_{\xi_i^{\varepsilon}} \to 0 \text{ as } \varepsilon \to 0$$
 (1.3)

in the measure sense. Here δ_{ξ} denotes Dirac mass supported at ξ . Also the location of the blowing-up points is well understood. Indeed, in [23] and [25] it is established that the N-tuple $(\xi_1^{\varepsilon}, \dots, \xi_N^{\varepsilon})$ converges, up to a subsequence, to a critical point of the functional

$$\frac{1}{2} \sum_{i=1}^{N} H(\xi_i, \xi_i) + \sum_{\substack{i,j=1\\i < i}}^{N} G(\xi_i, \xi_j). \tag{1.4}$$

Here G(x,y) is the Green's function of $-\Delta$ over Ω under Dirichlet boundary conditions, i.e. G satisfies

$$\begin{cases}
-\Delta_y G(x,y) = \delta_x(y) & y \in \Omega \\
G(x,y) = 0 & y \in \partial\Omega
\end{cases}$$

Download English Version:

https://daneshyari.com/en/article/4589888

Download Persian Version:

https://daneshyari.com/article/4589888

<u>Daneshyari.com</u>