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In this paper, we consider spectral properties of Riesz product 
measures supported on homogeneous Cantor sets and we show 
the existence of spectral measures with arbitrary Hausdorff 
dimensions, including non-atomic zero-dimensional spectral 
measures and one-dimensional singular spectral measures.
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1. Introduction

Given sequences B := {bn}∞n=1 and D := {dn}∞n=1 of positive integers that satisfy

1 < dn < bn, n = 1, 2, · · · , (1.1)

we let

ρ1 := 1 and ρn :=
n−1∏
j=1

bj for n ≥ 2, (1.2)

and we define

C(B,D) :=
∞∑

n=1

Z/dn ∩ [0, 1)
ρn

. (1.3)

The set C(B, D) is a homogeneous Cantor set contained in the interval [0, 
∑∞

n=1(dn −
1)(dnρn)−1]. The reader may refer to [12,13,29] on homogeneous Cantor sets.

Define the Fourier transform μ̂ of a probability measure μ by μ̂(ξ) :=
∫
R
e−2πiξxdμ(x). 

In this paper, we consider the Riesz product measure μB,D defined by

μ̂D,B(ξ) :=
∞∏

n=1
Hdn

(
ξ

dnρn

)
, (1.4)

where

Hm(ξ) := 1
m

m−1∑
j=0

e−2πijξ = 1 − e−2πmiξ

m(1 − e−2πiξ) , m ≥ 1.

The Riesz product measure μB,D is supported on the homogeneous Cantor set C(B, D)
[12,13], and it becomes the Cantor measure μb,d when bn = b and dn = d for all n ≥ 1
[3–5,8].

A probability measure μ with compact support is said to be a spectral measure if there 
exists a countable set Λ of real numbers, called a spectrum, such that {e−2πiλx : λ ∈ Λ}
forms an orthonormal basis for L2(μ). A classical example of spectral measures is the 
Lebesgue measure on [0, 1], for which the set of integers is a spectrum. Spectral properties 
for a probability measure are one of fundamental problems in Fourier analysis and they 
have close connection to tiling as formulated in Fuglede’s spectral set conjecture [14,
17,18,20,22,23,31,32]. In 1998, Jorgensen and Pedersen [19] discovered the first families 
of non-atomic singular spectral measures, particularly Cantor measures μb,2 with 4 ≤
b ∈ 2Z. Since then, various singular spectral measures on self-similar/self-affine fractal 
sets have been found, see for instance [3–6,8,11,15–17,19,21,22,24,26,27,30,34]. In this 
paper, we consider spectral properties of Riesz product measures μB,D supported on
non-self-similar homogeneous Cantor sets C(B, D).
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