

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Corrigendum

Corrigendum to "Classifying C^* -algebras with both finite and infinite subquotients" [J. Funct. Anal. 265 (2013) 449–468]

Functional Analysi

癯

Søren Eilers^{a,*}, Gunnar Restorff^b, Efren Ruiz^c

^a Department of Mathematical Sciences, University of Copenhagen,

Universitetsparken 5, DK-2100 Copenhagen, Denmark

^b Faculty of Science and Technology, University of Faroe Islands, Nóatún 3,

FO-100 Tórshavn, Faroe Islands

 $^{\rm c}$ Department of Mathematics, University of Hawaii, Hilo, 200 W. Kawili St., Hilo, HI 96720-4091, USA

ARTICLE INFO

Article history: Received 18 June 2015 Accepted 30 September 2015 Available online 10 November 2015 Communicated by Stefaan Vaes

MSC: primary 46L35, 37B10 secondary 46M15, 46M18

Keywords: Classification Extensions Graph algebras

ABSTRACT

As recently pointed out by Gabe, a fundamental paper by Elliott and Kucerovsky concerning the absorption theory for C^* -algebras contains an error, and as a consequence we must report that Lemma 4.5 in [3] is not true as stated. In this corrigendum, we prove an adjusted statement and explain why the error has no consequences to the main results of [3]. In particular, it is noted that all the authors' claims concerning Morita equivalence or stable isomorphism of graph C^* -algebras remain correct as stated.

@ 2015 Elsevier Inc. All rights reserved.

In this note, we give a counterexample to [3, Lemma 4.5] and we make the necessary changes to make the statement true. Before doing this, we first explain where the error

DOI of original article: http://dx.doi.org/10.1016/j.jfa.2013.05.006.

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jfa.2015.09.027} 0022\text{-}1236/ \ensuremath{\odot}\ 2015$ Elsevier Inc. All rights reserved.

E-mail addresses: eilers@math.ku.dk (S. Eilers), gunnarr@setur.fo (G. Restorff), ruize@hawaii.edu (E. Ruiz).

occurred. In the proof of [3, Lemma 4.5] we used [6, Corollary 16] to conclude that a non-unital, purely large extension is nuclearly absorbing. This was the key component to prove [3, Lemma 4.5]. However, it was recently pointed out by James Gabe in [7] that [6, Corollary 16] is false in general; Gabe showed that there exists a non-unital extension that is purely large but not nuclearly absorbing. The error occurs for non-unital extensions $0 \to \mathfrak{I} \to \mathfrak{E} \to \mathfrak{A} \to 0$ with \mathfrak{A} unital. We can use [7, Example 1.1], to find a counterexample to [3, Lemma 4.5] as follows:

Example 1. Let p be a projection in $\mathbb{B}(\ell^2)$ such that p and $1_{\mathbb{B}(\ell^2)} - p$ are norm-full, properly infinite projections in $\mathbb{B}(\ell^2)$. Let $\mathfrak{e}: 0 \to \mathbb{K} \oplus \mathbb{K} \to \mathfrak{E} \to \mathbb{C} \to 0$ be the trivial extension induced by the *-homomorphism which maps $\lambda \in \mathbb{C}$ to $\lambda(p \oplus 1_{\mathbb{B}(\ell^2)})$. Since p and $1_{\mathbb{B}(\ell^2)} - p$ are norm-full, properly infinite projections in $\mathbb{B}(\ell^2)$, we have that p and $1_{\mathbb{B}(\ell^2)} - p$ are not elements of \mathbb{K} . Therefore, $1_{\mathbb{B}(\ell^2)} \oplus 1_{\mathbb{B}(\ell^2)} - p \oplus 1_{\mathbb{B}(\ell^2)} - p) \oplus 0$ is not an element of $\mathbb{K} \oplus \mathbb{K}$. Hence, \mathfrak{e} is a non-unital extension. By [7, Example 1.1], \mathfrak{e} is a purely large, full extension that is not nuclearly absorbing. Therefore, \mathfrak{e} is not absorbing since \mathbb{C} is a nuclear C^* -algebra. Therefore, \mathfrak{e} cannot be isomorphic to an absorbing extension.

We now construct a non-unital, absorbing extension $\mathfrak{f}: 0 \to \mathbb{K} \oplus \mathbb{K} \to \mathfrak{F} \to \mathbb{C} \to 0$ such that $[\tau_{\mathfrak{e}}] = [\tau_{\mathfrak{f}}]$ in $\mathrm{KK}^{1}(\mathbb{C}, \mathbb{K} \oplus \mathbb{K})$, where $\tau_{\mathfrak{e}}$ and $\tau_{\mathfrak{f}}$ are the Busby invariants of \mathfrak{e} and \mathfrak{f} respectively. Let q be a projection in $\mathbb{B}(\ell^{2})$ such that q and $\mathbb{1}_{\mathbb{B}(\ell^{2})} - q$ are norm-full, properly infinite projections in $\mathbb{B}(\ell^{2})$. Let $\mathfrak{f}: 0 \to \mathbb{K} \oplus \mathbb{K} \to \mathfrak{F} \to \mathbb{C} \to 0$ be the trivial extension induced by the *-homomorphism which maps $\lambda \in \mathbb{C}$ to $\lambda(p \oplus q)$. Using a similar argument as in the case for \mathfrak{e} , we have that \mathfrak{f} is a non-unital extension. By construction, \mathfrak{f} is a full extension and hence, \mathfrak{f} is a purely large extension since $\mathbb{K} \oplus \mathbb{K}$ has the corona factorization property. Since $\mathbb{1}_{\mathbb{B}(\ell^{2})} - p$ and $\mathbb{1}_{\mathbb{B}(\ell^{2})} - q$ are norm-full, properly infinite projections in $\mathbb{B}(\ell^{2})$, we have that $\mathbb{1}_{\mathbb{B}(\ell^{2})} \oplus \mathbb{1}_{\mathbb{B}(\ell^{2})} - p \oplus q = (\mathbb{1}_{\mathbb{B}(\ell^{2})} - p) \oplus (\mathbb{1}_{\mathbb{B}(\ell^{2})} - q)$ is a norm-full, properly infinite projection in $\mathbb{B}(\ell^{2}) \oplus \mathbb{B}(\ell^{2})$. Moreover, we have that $(\mathbb{1}_{\mathbb{B}(\ell^{2})} \oplus \mathbb{1}_{\mathbb{B}(\ell^{2})} - p \oplus q)\mathfrak{F} \subseteq \mathbb{K} \oplus \mathbb{K}$. Therefore, by [7, Theorem 2.3], \mathfrak{f} is a nuclearly absorbing extension, and hence absorbing since \mathbb{C} is nuclear. Since \mathfrak{e} and \mathfrak{f} are trivial extensions, we have that $[\tau_{\mathfrak{e}}] = [\tau_{\mathfrak{f}] = 0$ in $\mathrm{KK}^{1}(\mathbb{C}, \mathbb{K} \oplus \mathbb{K})$. Thus we have proved the existence of \mathfrak{f} .

Since $\mathfrak e$ is not an absorbing extension and $\mathfrak f$ is an absorbing extension, we have that $\mathfrak e$ is not isomorphic to $\mathfrak f.$ Note that

$$\mathrm{KK}(\mathrm{id}_{\mathbb{C}}) \times [\tau_{\mathfrak{f}}] = [\tau_{\mathfrak{f}}] = [\tau_{\mathfrak{e}}] \times \mathrm{KK}(\mathrm{id}_{\mathbb{K} \oplus \mathbb{K}})$$

in $\mathrm{KK}^1(\mathbb{C}, \mathbb{K} \oplus \mathbb{K})$. We claim that \mathfrak{E} is not isomorphic to \mathfrak{F} . Suppose there exists a *-isomorphism $\varphi : \mathfrak{E} \to \mathfrak{F}$. Let $\pi_{\mathfrak{f}}$ be the canonical surjective *-homomorphism from \mathfrak{F} to \mathbb{C} . Since φ and $\pi_{\mathfrak{f}}$ are surjective, we have that $(\pi_{\mathfrak{f}} \circ \varphi)(\mathbb{K} \oplus \mathbb{K})$ is an ideal of \mathbb{C} . So, $(\pi_{\mathfrak{f}} \circ \varphi)(\mathbb{K} \oplus \mathbb{K}) = 0$ or $(\pi_{\mathfrak{f}} \circ \varphi)(\mathbb{K} \oplus \mathbb{K}) = \mathbb{C}$. Since $\mathbb{K} \oplus \mathbb{K}$ has exactly four ideals, $0, \mathbb{K} \oplus 0, 0 \oplus \mathbb{K}$, and $\mathbb{K} \oplus \mathbb{K}$, we have that $(\pi_{\mathfrak{f}} \circ \varphi)(\mathbb{K} \oplus \mathbb{K})$ is either isomorphic to $0, \mathbb{K}$, or $\mathbb{K} \oplus \mathbb{K}$. Hence, $(\pi_{\mathfrak{f}} \circ \varphi)(\mathbb{K} \oplus \mathbb{K}) = 0$ which implies that φ maps $\mathbb{K} \oplus \mathbb{K}$ to $\mathbb{K} \oplus \mathbb{K}$. Similarly,

Download English Version:

https://daneshyari.com/en/article/4589941

Download Persian Version:

https://daneshyari.com/article/4589941

Daneshyari.com