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1. Introduction
1.1. Motivation

It is well known that convex functions defined on subdomains of R™ are locally Lip-
schitz continuous and almost everywhere twice differentiable. Moreover, the celebrated
maximum principle due to Aleksandrov provides a global regularity result for convex
functions that are continuous on the closure and are vanishing on the boundary of the
domain. More precisely, if Q C R™ is a bounded open and convex domain, and u € C(£2)
is convex with © = 0 on 0f), then

[u(&)|™ < Cpdist (&g, 0Q)diam(Q)" L™ (0u(Q)), V& € Q, (1.1)

where C}, > 0 is a constant depending only on the dimension n. In the above expression
the notation L£"(0u(2)) stands for the measure of the range of the so-called normal
mapping of u. To define this concept we need first the subdifferential du(&p) of u at &,
given by

du(&o) = {p € R" s u(§) = u(&o) +p- (§ — &), VE € O},

¢

where ‘-’ is the usual inner product in R™. The range of the normal mapping of u is
defined by

ou(QY) = U ou(§).

£eq
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