

Contents lists available at ScienceDirect

Journal of Functional Analysis

Sharp comparison and maximum principles via horizontal normal mapping in the Heisenberg group

Zoltán M. Balogh ^{a,*,1}, Andrea Calogero ^b, Alexandru Kristály ^{c,d,2}

- ^a Mathematisches Institute, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
- ^b Dipartimento di Matematica e Applicazioni, Universitá di Milano Bicocca, Via Cozzi 53, 20125 Milano, Italy
- ^c Department of Economics, Babeş-Bolyai University, 400591 Cluj-Napoca, Romania
- $^{
 m d}$ Institute of Applied Mathematics, Óbuda University, Budapest, Hungary

ARTICLE INFO

Article history: Received 11 March 2014 Accepted 19 August 2015 Available online 29 August 2015 Communicated by Cédric Villani

MSC: 35R03 26B25

Keywords:
Heisenberg group
H-convex functions
Comparison principle
Aleksandrov-type maximum
principle

ABSTRACT

In this paper we solve a problem raised by Gutiérrez and Montanari about comparison principles for H-convex functions on subdomains of Heisenberg groups. Our approach is based on the notion of the sub-Riemannian horizontal normal mapping and uses degree theory for set-valued maps. The statement of the comparison principle combined with a Harnack inequality is applied to prove the Aleksandrov-type maximum principle, describing the correct boundary behavior of continuous H-convex functions vanishing at the boundary of horizontally bounded subdomains of Heisenberg groups. This result answers a question by Garofalo and Tournier. The sharpness of our results are illustrated by examples.

© 2015 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: zoltan.balogh@math.unibe.ch (Z.M. Balogh), andrea.calogero@unimib.it (A. Calogero), alexandru.kristaly@econ.ubbcluj.ro (A. Kristály).

 $^{^{1}}$ Z.M. Balogh was supported by the Swiss National Science Foundation grant no. 200020-130184, and the FP7 EU Commission Project CG-DICE.

² A. Kristály was supported by a CNCS-UEFISCDI grant no. PN-II-ID-PCE-2011-3-0241, and János Bolyai Research Scholarship.

Contents

1.	Introduction		2670
	1.1.	Motivation	2670
	1.2.	Statements of main results	2672
2.	Prelin	ninaries	2675
3.	Comparison principles in Heisenberg groups		2679
	3.1.	Comparison lemma for the horizontal normal mapping	2679
	3.2.	Comparison principles for H -convex functions	2683
4.	Aleksandrov-type maximum principles		2687
	4.1.	Maximum principle on horizontal planes	2688
	4.2.	Maximum principle in convex domains	2691
5.	Examples: sharpness of the results		2694
	5.1.	Failure of comparison principles in the absence of convexity	2694
	5.2.	Sharpness of the Aleksandrov-type maximum principle	2695
	5.3.	Horizontal Monge-Ampère operator versus horizontal normal mapping	2698
Acknowledgment			2701
Appe	ndix A		2702
	A.1.	Degree theory for set-valued maps	2702
	A.2.	Quantitative Harnack-type inequality for H -convex functions	2703
Refer	ences .		2707

1. Introduction

1.1. Motivation

It is well known that convex functions defined on subdomains of \mathbb{R}^n are locally Lipschitz continuous and almost everywhere twice differentiable. Moreover, the celebrated maximum principle due to Aleksandrov provides a global regularity result for convex functions that are continuous on the closure and are vanishing on the boundary of the domain. More precisely, if $\Omega \subset \mathbb{R}^n$ is a bounded open and convex domain, and $u \in C(\overline{\Omega})$ is convex with u = 0 on $\partial\Omega$, then

$$|u(\xi_0)|^n \le C_n \operatorname{dist}(\xi_0, \partial\Omega) \operatorname{diam}(\Omega)^{n-1} \mathcal{L}^n(\partial u(\Omega)), \ \forall \xi_0 \in \Omega,$$
 (1.1)

where $C_n > 0$ is a constant depending only on the dimension n. In the above expression the notation $\mathcal{L}^n(\partial u(\Omega))$ stands for the measure of the range of the so-called normal mapping of u. To define this concept we need first the subdifferential $\partial u(\xi_0)$ of u at ξ_0 , given by

$$\partial u(\xi_0) = \{ p \in \mathbb{R}^n : u(\xi) \ge u(\xi_0) + p \cdot (\xi - \xi_0), \ \forall \xi \in \Omega \},$$

where '·' is the usual inner product in \mathbb{R}^n . The range of the normal mapping of u is defined by

$$\partial u(\Omega) = \bigcup_{\xi \in \Omega} \partial u(\xi).$$

Download English Version:

https://daneshyari.com/en/article/4589943

Download Persian Version:

https://daneshyari.com/article/4589943

Daneshyari.com