Implicit/inverse function theorems for free noncommutative functions ${ }^{\text {st }}$

Gulnara Abduvalieva, Dmitry S. Kaliuzhnyi-Verbovetskyi*
Department of Mathematics, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States

A R T I C L E I N F O

Article history:
Received 3 February 2015
Accepted 30 July 2015
Available online 13 August 2015
Communicated by Stefaan Vaes

MSC:

47J07
17A50
46L07
16N40

Keywords:

Free noncommutative functions
Implicit/inverse function theorem
Operator spaces
Nilpotent matrices

A B S T R A C T

We prove an implicit function theorem and an inverse function theorem for free noncommutative functions over operator spaces and on the set of nilpotent matrices. We apply these results to study dependence of the solution of the initial value problem for ODEs in noncommutative spaces on the initial data and to extremal problems with noncommutative constraints.
© 2015 Elsevier Inc. All rights reserved.

[^0]http://dx.doi.org/10.1016/j.jfa.2015.07.011
0022-1236/© 2015 Elsevier Inc. All rights reserved.

1. Introduction and statements of the results

1.1. Free NC functions

A free noncommutative (nc) function is a mapping defined on the set of matrices of all sizes which respects direct sums and similarities, or equivalently, respects intertwinings. Examples include but are not limited to nc polynomials, power series, and matrix-valued rational expressions. The theory of free nc functions was first introduced in the articles of Joseph L. Taylor [23,24]. It was further developed by D.-V. Voiculescu [25,26] for the needs of free probability. Various aspects of nc functions ${ }^{1}$ have been studied by Helton [7], Helton, Klep, and McCullough [8,9], Helton and McCullough [10], Helton and Putinar [11], Popescu [20,21], Muhly and Solel [16], Agler and McCarthy [2,3], Agler and Young [4], the second author and Vinnikov [12,14], and others.

In the book of the second author and Victor Vinnikov [13], the theory has been put on a systematic foundation. The nc difference-differential calculus has been developed for studying various questions of nc analysis; in particular, the classical (commutative) theory of analytic functions was extended to a nc setting. It has been established that very mild assumptions of local boundedness of nc functions imply analyticity.

We provide the reader with some basic definitions from [13]. Let \mathcal{R} be a unital commutative ring. For a module \mathcal{M} over \mathcal{R}, we define the nc space over \mathcal{M},

$$
\begin{equation*}
\mathcal{M}_{\mathrm{nc}}:=\coprod_{n=1}^{\infty} \mathcal{M}^{n \times n} \tag{1.1}
\end{equation*}
$$

A subset $\Omega \subseteq \mathcal{M}_{\mathrm{nc}}$ is called a nc set if it is closed under direct sums; that is, denoting $\Omega_{n}=\Omega \cap \mathcal{M}^{n \times n}$, we have

$$
X \in \Omega_{n}, Y \in \Omega_{m} \Longrightarrow X \oplus Y:=\left[\begin{array}{cc}
X & 0 \tag{1.2}\\
0 & Y
\end{array}\right] \in \Omega_{n+m}
$$

Matrices over \mathcal{R} act from the right and from the left on matrices over \mathcal{M} by the standard rules of matrix multiplication: if $T \in \mathcal{R}^{r \times p}$ and $S \in \mathcal{R}^{p \times s}$, then for $X \in \mathcal{M}^{p \times p}$ we have

$$
T X \in \mathcal{M}^{r \times p}, \quad X S \in \mathcal{M}^{p \times s} .
$$

In the special case where $\mathcal{M}=\mathcal{R}^{d}$, we identify matrices over \mathcal{M} with d-tuples of matrices over \mathcal{R} :

$$
\left(\mathcal{R}^{d}\right)^{p \times q} \cong\left(\mathcal{R}^{p \times q}\right)^{d} .
$$

[^1]
https://daneshyari.com/en/article/4589946

Download Persian Version:

https://daneshyari.com/article/4589946

Daneshyari.com

[^0]: th The authors were partially supported by NSF grant DMS0901628. The second author was also partially supported by US-Israel BSF grant 2010432.

 * Corresponding author.

 E-mail addresses: gka26@drexel.edu (G. Abduvalieva), dmitryk@math.drexel.edu
 (D.S. Kaliuzhnyi-Verbovetskyi).

[^1]: ${ }^{1}$ Here and in the rest of the paper we will omit the word "free" for short.

