

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Essentially commuting projections

E. Andruchow ^a*,*b*,*∗, E. Chiumiento ^b*,*^c, M.E. Di Iorio y Lucero ^a*,*^b

^a *Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J.M. Gutierrez*

1150, (1613) Los Polvorines, Argentina ^b *Instituto Argentino de Matemática, 'Alberto P. Calderón', CONICET, Saavedra*

C Departamento de Matemática, FCE-UNLP, Calles 50 y 115, (1900) La Plata, *Argentina*

A R T I C L E I N F O A B S T R A C T

Article history: Received 30 May 2014 Accepted 1 October 2014 Available online 16 October 2014 Communicated by Alain Connes

MSC: 47A53 46L05 53C22

Keywords: Projections Compact operators Fredholm index Geodesics

Let $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$ be a fixed orthogonal decomposition of a Hilbert space, with both subspaces of infinite dimension, and let E_+, E_- be the projections onto \mathcal{H}_+ and \mathcal{H}_- . We study the set \mathcal{P}_{cc} of orthogonal projections P in \mathcal{H} which *essentially commute* with E_{+} (or equivalently with E_{-}), i.e.

 $[P, E_{+}] = PE_{+} - E_{+}P$ is compact.

By means of the projection π onto the Calkin algebra, one sees that these projections $P \in \mathcal{P}_{cc}$ fall into nine classes. Four *discrete* classes, which correspond to $\pi(P)$ being 0, 1, $\pi(E_+)$ or $\pi(E_-)$, and five *essential* classes which we describe below. The discrete classes are, respectively, the finite rank projections, finite co-rank projections, the Sato Grassmannian of H_+ and the Sato Grassmannian of $H_-.$ Thus the connected components of each of these classes are parametrized by the integers (via de rank, the co-rank or the Fredholm index, respectively). The essential classes are shown to be connected. We are interested in the geometric structure of \mathcal{P}_{cc} , being the set of selfadjoint projections of the *C*∗-algebra B*cc* of operators in $\mathcal{B}(\mathcal{H})$ which essentially commute with E_{+} . In particular, we study the problem of existence of minimal geodesics joining two given projections in the same component. We show that

* Corresponding author.

E-mail addresses: eandruch@ungs.edu.ar (E. Andruchow), eduardo@mate.unlp.edu.ar (E. Chiumiento), mdiiorio@ungs.edu.ar (M.E. Di Iorio y Lucero).

the Hopf–Rinow Theorem holds in the discrete classes, but not in the essential classes. Conditions for the existence and uniqueness of geodesics in these latter classes are found. © 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$ be a fixed decomposition of a separable Hilbert space, with both \mathcal{H}_+ , \mathcal{H}_- infinite dimensional. Denote by E_+ and E_- the orthogonal projections onto \mathcal{H}_+ and \mathcal{H}_- , respectively. We shall study the unitary group \mathcal{U}_{cc} and the set of projections \mathcal{P}_{cc} of the *C*^{*}-algebra $\mathcal{B}_{cc} = \mathcal{B}_{cc}(\mathcal{H}; \mathcal{H}_+, \mathcal{H}_-)$ given by

$$
\mathcal{B}_{cc} = \{ T \in \mathcal{B}(\mathcal{H}) : [T, E_+] \text{ is compact} \}.
$$

Here \vert , \vert denotes the commutator. Note that this condition is equivalent to $\vert T, E_{-}\vert$ compact. If we denote by *J* the symmetry which is the identity in \mathcal{H}_+ and minus the identity in \mathcal{H}_- (i.e. $J = 2E_+ - 1 = 1 - 2E_$), this condition is equivalent to [*T*, *J*] compact. If one writes operators in H as two by two matrices in terms of the given decomposition, elements in \mathcal{B}_{cc} have compact off-diagonal entries (with this matricial characterization, it is straightforward to verify that \mathcal{B}_{cc} is a C^* -algebra). If we denote by

$$
\pi: \mathcal{B}(\mathcal{H}) \to \mathcal{C}(\mathcal{H}) = \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})
$$

the homomorphism onto the Calkin algebra, and $e_+ = \pi(E_+),$ then

$$
\mathcal{B}_{cc} = \pi^{-1}(\lbrace e_+\rbrace'),
$$

where $\{e_+\}$ denotes the set of elements in $\mathcal{C}(\mathcal{H})$ that commute with e_+ .

The set \mathcal{P}_{cc} relates to the so called restricted or Sato Grassmannian (see e.g. [\[13,14\],](#page--1-0) or [\[5,12\]](#page--1-0) for a version using Hilbert–Schmidt operators instead of compact operators). In fact, P*cc* is disconnected, and several of its components form the restricted Grassmannian of \mathcal{H}_+ (as well as the restricted Grassmannian of \mathcal{H}_-). Thus this framework enables one to regard the restricted Grassmannian as (certain components of) the set of projections of a C^* -algebra. Again, by means of the homomorphism π , one sees that \mathcal{P}_{cc} decomposes into nine classes. If $P \in \mathcal{P}_{cc}$, then $\pi(P)$ is one of the following (written as 2×2 matrices in terms of $e_+, e_- = 1 - e_+$:

$$
0, 1, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} p_+ & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} p_+ & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & p_- \end{pmatrix}, \\ \begin{pmatrix} 1 & 0 \\ 0 & p_- \end{pmatrix} \text{ and } \begin{pmatrix} p_+ & 0 \\ 0 & p_- \end{pmatrix}.
$$

Download English Version:

<https://daneshyari.com/en/article/4589958>

Download Persian Version:

<https://daneshyari.com/article/4589958>

[Daneshyari.com](https://daneshyari.com)