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We prove existence, uniqueness and optimal regularity of
solutions to the stationary obstacle problem defined by the
fractional Laplacian operator with drift, in the subcritical
regime. As in [4], we localize our problem by considering a
suitable extension operator introduced in [2]|. The structure of
the extension equation is different from the one constructed
in [4], in that the obstacle function has less regularity, and
exhibits some singularities. To take into account the new
features of the problem, we prove a new monotonicity formula,
which we then use to establish the optimal regularity of
solutions.
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1. Introduction

We consider the linear operator defined by the fractional Laplacian with drift,

Lu(z) :== (—A)*u(z) + b(z) - Vu(z) + c(z)u(z), Vue C2(R"), (1.1)

where the coefficient functions b : R” — R™ and ¢ : R® — R are assumed to be Holder
continuous. The action of the fractional Laplacian operator on functions u € C2(R") is
given by the singular integral,

(7A) ( - Cnspv / | y|n+25 yv

understood in the sense of the principal value. The constant ¢, s is positive and depends
only on the dimension n € N, and on the parameter s € (0, 1). The range (0, 1) of the pa-
rameter s is particularly interesting because in this case the fractional Laplacian operator
is the infinitesimal generator of the symmetric 2s-stable process [1, Example 3.3.8].

The fractional Laplacian plays the same paradigmatic role in the theory of non-
local operators that the Laplacian plays in the theory of local elliptic operators. For
this reason, the regularity of solutions to equations defined by the fractional Laplacian
and its gradient perturbation is intensely studied in the literature. In this article, we
study the stationary obstacle problem defined by the fractional Laplacian operator with
drift (1.1), in the subcritical regime, that is, the case when the parameter s belongs to the
range (1/2,1). Given an obstacle function, ¢ € C3*(R™) N Co(R™), we prove existence,
uniqueness and optimal regularity of solutions in Holder spaces, u € C1T%(R™), for the
stationary obstacle problem,

min{(—A)*u(z) + b(z) - Vu(z) + c(z)u(z), u(z) —p(z)} =0, VzeR". (1.2)
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