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1. Introduction

The Pdélya—Szeg6 principle states that, given a non-negative function u : R™ — R,
the Dirichlet integral fR”
common of which are the Schwarz spherical symmetrization about a point and Steiner

Vu|P decreases under suitable rearrangements, the two most

symmetrization about a hyperplane. Their corresponding Pélya—Szegd inequalities are
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a powerful tool to approach a wide number of variational problems of geometric and
functional nature.

Although the Pélya—Szegd inequality is known from long time, the issue of char-
acterizing the extremals has been studied only more recently. In particular the first
characterization of equality cases in the Pélya—Szegd inequality for spherical rearrange-
ments has been provided by Brothers and Ziemer in [7] (see also [15] for an alternative
proof). Instead, for Steiner symmetrization the characterization has been obtained in
[13]. Both these results have been extended to the intermediate codimensions in [9].

When compared with these results, the natural issue of proving quantitative versions
of the Pdlya—Szegd inequality is a much more delicate task. The reason is that, even
when the Dirichlet integral of a function u and of its symmetral coincide, u can be very
different from its symmetral. In the case of Schwarz symmetrization this phenomenon
may appear when the gradient of u is zero on sets of positive measure. Similarly, in the
case of Steiner symmetrization the phenomenon could appear as soon as the derivative
of w in the direction orthogonal to the symmetrization hyperplane is zero on sets of
positive measure. Therefore any stability result for the Pélya—Szegé inequality must
require a control of the measure of the set where the gradient or some of the derivatives
are small (see [13,11] and the examples therein).

In this paper we deal with the stability of the Pdolya—Szeg6 inequality for the sym-
metrization of functions having at least a mild form of concavity that is a natural
geometric compromise to avoid the phenomena described above. At the same time the
class of functions to which our stability results apply is large enough to include the so-
lutions of the torsion problem and the first eigenfunction of the Laplacian operator with
Dirichlet boundary conditions in smooth convex domains (see [5,21,20]).

To describe our main results let us recall the definition of Steiner symmetrization for
a measurable function u : R™ — [0, 00) with compact support. For simplicity we write a
point z € R™ as (z',z,) € R"~! x R. The Steiner symmetral u* of u with respect to the
hyperplane {z, = 0} is defined as

u(z) :=inf{t >0 : L'({s : u(2/,s) >t}) < 2lz,|}

for any x € R™. If the function u belongs to WP (R™), then also u® belongs to the same
space and the Polya—Szeg6 inequality states that

/\Vu|p dox > /‘Vuslpda:.
R"L R"
Let us denote by

Alu,u®) = /|Vu|pda:—/|VuS‘pdx

Rn Rn
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