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We exhibit balance conditions between a Young function A
and a Young function B for a Korn type inequality to hold 
between the LB norm of the gradient of vector-valued func-
tions and the LA norm of its symmetric part. In particular, 
we extend a standard form of the Korn inequality in Lp, with 
1 < p < ∞, and an Orlicz version involving a Young function 
A satisfying both the Δ2 and the ∇2 condition.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Given an open subset Ω of Rn and a vector-valued function u : Ω → R
n, the (dis-

tributional) symmetric gradient Eu of u is defined as the symmetric part of its gradient 
∇u ∈ R

n×n. Here, Rn×n denotes the space of n × n matrices. In formulas,

Eu = 1
2
(
∇u + (∇u)T

)
,
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where (∇u)T stands for the transpose of ∇u. Sobolev type spaces E1,p(Ω, Rn), with 1 ≤
p ≤ ∞, where the role of the full gradient in the standard Sobolev spaces W 1,p(Ω, Rn)
is instead played by the symmetric gradient, can be defined as

E1,p(Ω,Rn
)

=
{
u ∈ Lp

(
Ω,Rn

)
: the distribution Eu belongs to Lp

(
Ω,Rn×n

)}
. (1.1)

Similarly, the space E1,p
0 (Ω, Rn) of those functions in E1,p(Ω, Rn) which vanish, in a 

suitable sense, on ∂Ω, replaces the Sobolev space W 1,p
0 (Ω, Rn). The space of those func-

tions u such that Eu is just a finite matrix-valued Radon measure on Ω, called functions 
of bounded deformation, has also been investigated in the literature [5,29,53].

A fundamental result in the theory of spaces built upon the symmetric gradient is the 
Korn inequality. Standard references for this inequality include [16,21,23,24,26,27,34,35,
42,43]; more recent developments along various directions can be found in [2–4,6,8,13,
18,30,37,44–47,55]. In its basic form, the Korn inequality asserts that, if Ω is bounded 
and 1 < p < ∞, then there exists a constant C such that

‖∇u‖Lp(Ω,Rn×n) ≤ C‖Eu‖Lp(Ω,Rn×n) (1.2)

for every u ∈ E1,p
0 (Ω, Rn). A version of inequality (1.2) for functions which need not 

vanish on ∂Ω tells us that if Ω is a Lipschitz domain and 1 < p < ∞, then there exists 
a constant C such that

inf
S=−ST

‖∇u − S‖Lp(Ω,Rn×n) ≤ C‖Eu‖Lp(Ω,Rn×n) (1.3)

for every u ∈ E1,p(Ω, Rn). Recall that a Lipschitz domain is a bounded connected 
open set in Rn which, in a neighborhood of each point of its boundary, agrees with the 
subgraph of a Lipschitz continuous function of n − 1 variables in a suitable orthogonal 
coordinate system. Let us notice that inequality (1.3) can be equivalently stated with 
the infimum extended over all matrices S ∈ R

n×n, instead of just those matrices S which 
are skew-symmetric – see Remark 3.7, Section 3.

Inequalities (1.2) and (1.3) roughly amount to asserting that gradients, whose sym-
metric part is small in a Lebesgue norm, are close, in the same norm, to a constant 
skew-symmetric matrix, and, in the case of functions vanishing on the boundary, such a 
matrix vanishes.

The spaces E1,p(Ω, Rn), and variants of them, are of crucial use in the analysis of 
mathematical models for certain physical phenomena described in terms of differentiable 
vector-valued functions u, and depending just on their symmetric gradient Eu. This is 
the case, for instance, in a classical mathematical theory of plasticity, where u(x) stands 
for the displacement from the unconstrained equilibrium position of a plastic body at the 
point x, and ‖Eu‖L1(Ω,Rn×n) (or, more generally, the total variation of Eu if the latter 
is just a finite Radon measure) accounts for the energy of the deformation [53].
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