

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Korn type inequalities in Orlicz spaces

Andrea Cianchi

Dipartimento di Matematica e Informatica "U. Dini", Università di Firenze, Piazza Ghiberti 27, 50122 Firenze, Italy

ARTICLE INFO

Article history: Received 19 September 2013 Accepted 11 July 2014 Available online 30 July 2014 Communicated by F. Barthe

MSC: 46E35 46E30

Keywords: Korn inequality Orlicz spaces Symmetric gradient Singular integrals

ABSTRACT

We exhibit balance conditions between a Young function Aand a Young function B for a Korn type inequality to hold between the L^B norm of the gradient of vector-valued functions and the L^A norm of its symmetric part. In particular, we extend a standard form of the Korn inequality in L^p , with 1 , and an Orlicz version involving a Young function<math>A satisfying both the Δ_2 and the ∇_2 condition.

© 2014 Elsevier Inc. All rights reserved.

CrossMark

1. Introduction

Given an open subset Ω of \mathbb{R}^n and a vector-valued function $\mathbf{u} : \Omega \to \mathbb{R}^n$, the (distributional) symmetric gradient $\mathcal{E}\mathbf{u}$ of \mathbf{u} is defined as the symmetric part of its gradient $\nabla \mathbf{u} \in \mathbb{R}^{n \times n}$. Here, $\mathbb{R}^{n \times n}$ denotes the space of $n \times n$ matrices. In formulas,

$$\mathcal{E}u = \frac{1}{2} \big(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \big),$$

E-mail address: cianchi@unifi.it.

 $\label{eq:http://dx.doi.org/10.1016/j.jfa.2014.07.012} 0022-1236/© 2014 Elsevier Inc. All rights reserved.$

where $(\nabla \mathbf{u})^T$ stands for the transpose of $\nabla \mathbf{u}$. Sobolev type spaces $E^{1,p}(\Omega, \mathbb{R}^n)$, with $1 \leq p \leq \infty$, where the role of the full gradient in the standard Sobolev spaces $W^{1,p}(\Omega, \mathbb{R}^n)$ is instead played by the symmetric gradient, can be defined as

$$E^{1,p}(\Omega,\mathbb{R}^n) = \left\{ \mathbf{u} \in L^p(\Omega,\mathbb{R}^n) : \text{the distribution } \mathcal{E}\mathbf{u} \text{ belongs to } L^p(\Omega,\mathbb{R}^{n\times n}) \right\}.$$
(1.1)

Similarly, the space $E_0^{1,p}(\Omega, \mathbb{R}^n)$ of those functions in $E^{1,p}(\Omega, \mathbb{R}^n)$ which vanish, in a suitable sense, on $\partial\Omega$, replaces the Sobolev space $W_0^{1,p}(\Omega, \mathbb{R}^n)$. The space of those functions **u** such that \mathcal{E} **u** is just a finite matrix-valued Radon measure on Ω , called functions of bounded deformation, has also been investigated in the literature [5,29,53].

A fundamental result in the theory of spaces built upon the symmetric gradient is the Korn inequality. Standard references for this inequality include [16,21,23,24,26,27,34,35, 42,43]; more recent developments along various directions can be found in [2–4,6,8,13, 18,30,37,44–47,55]. In its basic form, the Korn inequality asserts that, if Ω is bounded and 1 , then there exists a constant C such that

$$\|\nabla \mathbf{u}\|_{L^p(\Omega,\mathbb{R}^{n\times n})} \le C \|\mathcal{E}\mathbf{u}\|_{L^p(\Omega,\mathbb{R}^{n\times n})}$$
(1.2)

for every $\mathbf{u} \in E_0^{1,p}(\Omega, \mathbb{R}^n)$. A version of inequality (1.2) for functions which need not vanish on $\partial \Omega$ tells us that if Ω is a Lipschitz domain and 1 , then there exists a constant <math>C such that

$$\inf_{\mathbf{S}=-\mathbf{S}^T} \|\nabla \mathbf{u} - \mathbf{S}\|_{L^p(\Omega, \mathbb{R}^{n \times n})} \le C \|\mathcal{E}\mathbf{u}\|_{L^p(\Omega, \mathbb{R}^{n \times n})}$$
(1.3)

for every $\mathbf{u} \in E^{1,p}(\Omega, \mathbb{R}^n)$. Recall that a Lipschitz domain is a bounded connected open set in \mathbb{R}^n which, in a neighborhood of each point of its boundary, agrees with the subgraph of a Lipschitz continuous function of n-1 variables in a suitable orthogonal coordinate system. Let us notice that inequality (1.3) can be equivalently stated with the infimum extended over all matrices $\mathbf{S} \in \mathbb{R}^{n \times n}$, instead of just those matrices \mathbf{S} which are skew-symmetric – see Remark 3.7, Section 3.

Inequalities (1.2) and (1.3) roughly amount to asserting that gradients, whose symmetric part is small in a Lebesgue norm, are close, in the same norm, to a constant skew-symmetric matrix, and, in the case of functions vanishing on the boundary, such a matrix vanishes.

The spaces $E^{1,p}(\Omega, \mathbb{R}^n)$, and variants of them, are of crucial use in the analysis of mathematical models for certain physical phenomena described in terms of differentiable vector-valued functions \mathbf{u} , and depending just on their symmetric gradient $\mathcal{E}\mathbf{u}$. This is the case, for instance, in a classical mathematical theory of plasticity, where $\mathbf{u}(x)$ stands for the displacement from the unconstrained equilibrium position of a plastic body at the point x, and $\|\mathcal{E}\mathbf{u}\|_{L^1(\Omega,\mathbb{R}^{n\times n})}$ (or, more generally, the total variation of $\mathcal{E}\mathbf{u}$ if the latter is just a finite Radon measure) accounts for the energy of the deformation [53]. Download English Version:

https://daneshyari.com/en/article/4589987

Download Persian Version:

https://daneshyari.com/article/4589987

Daneshyari.com