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We establish optimal conditions under which the G-conver-
gence of linear elliptic operators implies the convergence of the 
corresponding Dirichlet to Neumann maps. As an application 
we show that the approximate cloaking isotropic materials 
from [19] are independent of the source.
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1. Introduction

We start with the definition of the Dirichlet to Neumann map (voltage to current) 
map. Given a bounded domain Ω ∈ R

d and an elliptic matrix σ ∈ L∞(Ω, Md×d), 
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for a given boundary data ϕ ∈ H1/2(∂Ω), there is a unique solution u ∈ H1(Ω) to the 
Dirichlet problem; {

∇ · (σ∇u) = 0 in Ω

u|∂Ω = ϕ.
(1.1)

When the boundary is sufficiently smooth, the measurements on the boundary consist 
of the classical Dirichlet-to-Neumann map

Λσ(ϕ) = 〈σ∇u, ν〉|∂Ω , (1.2)

where ν denotes the exterior unit normal to the boundary. In this way Λσ : H1/2(∂Ω) →
H−1/2(∂Ω). It follows by integration by parts that Λσ can also be described in the weak 
form as

〈
Λσ(ϕ), ψ

〉
=

∫
Ω

〈σ∇u,∇ψ̃〉, (1.3)

where ψ ∈ H1/2(∂Ω) and ψ̃ ∈ H1(Ω) is an extension of ψ into Ω. In case ∂Ω lacks of a 
proper normal, the weak formulation is still valid.

The Calderón inverse problem consists of the stable determination of σ from Λσ, 
see [32,21,29,7] for the uniqueness in the isotropic case, [1,2,9,10,13,15,12] for stability 
and [28,29] for the reconstruction. Much less is known in the anisotropic case except in 
dimension d = 2 [8]. Notice that when the Dirichlet to Neumann map is known for all 
energies, uniqueness and stability are studied also for the anisotropic case, see e.g. [23,6].

The results from [1,9,10,13,15,12] require some uniform control of the oscillations of σ
(conditional stability). Unfortunately, wild oscillations of a sequence of conductivities 
σn create instability of the Calderón problem. This is well expressed in terms of the 
G-topology [14,22]. It is not hard to see that if σn G-converges to σ, the corresponding 
Dirichlet to Neumann maps converge weakly. Namely, for each ϕ, ψ ∈ H1/2(∂Ω),〈

Λσn
(ϕ), ψ

〉
→

〈
Λσ(ϕ), ψ

〉
. (1.4)

Now, if σn G-converges to σ but does not convergence pointwise, we deduce that the 
convergence (1.4) does not imply any sort of Lp convergence. (Notice σn, σ could be 
chosen to be C∞!)

However, the stability estimates are normally stated in terms of the operator 
norm and (1.4) by itself does not imply the convergence in the operator norm 
‖‖L(H1/2(∂Ω)→H−1/2(∂Ω)). In [4], it is proved that if, in addition to the G-convergence, 
we have that σn = σ = I on Ωδ = {x ∈ Ω : d(x, ∂Ω) ≤ δ}, with Ω being the unit 
disc and σ = I, then in fact the G-convergence implies the convergence in the operator 
norm. On the other hand, the stability at the boundary of the inverse problem implies 
that, in order to obtain operator norm convergence, some control on the behaviour of 
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