

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Remarks on the Cauchy problem for the one-dimensional quadratic (fractional) heat equation

Luc Molinet^{a,*}, Slim Tayachi^b

 ^a Laboratoire de Mathématiques et Physique Théorique, Universté Francois Rabelais Tours, CNRS UMR 7350, Fédération Denis Poisson, Parc Grandmont, 37200 Tours, France
^b Department of Mathematics, Faculty of Science of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia

ARTICLE INFO

Article history: Received 27 May 2013 Accepted 1 August 2015 Available online 18 August 2015 Communicated by I. Rodnianski

MSC: 35K15 35K55 35K65 35B40

Keywords: Nonlinear heat equation Fractional heat equation Ill-posedness Well-posedness

ABSTRACT

We prove that the Cauchy problem associated with the one dimensional quadratic (fractional) heat equation: $u_t = -(-\Delta)^{\alpha}u \mp u^2$, $t \in (0,T)$, $x \in \mathbb{R}$ or \mathbb{T} , with $0 < \alpha \leq 1$ is well-posed in H^s for $s \geq \max(-\alpha, 1/2 - 2\alpha)$ except in the case $\alpha = 1/2$ where it is shown to be well-posed for s > -1/2 and ill-posed for s = -1/2. As a by-product we improve the known well-posedness results for the heat equation ($\alpha = 1$) by reaching the end-point Sobolev index s = -1. Finally, in the case $1/2 < \alpha \leq 1$, we also prove optimal results in the Besov spaces $B_2^{s,q}$.

@ 2015 Elsevier Inc. All rights reserved.

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jfa.2015.08.002} 0022\text{-}1236/ \ensuremath{\odot}\ 2015$ Elsevier Inc. All rights reserved.

E-mail addresses: Luc.Molinet@lmpt.univ-tours.fr (L. Molinet), slim.tayachi@fst.rnu.tn (S. Tayachi).

1. Introduction and main results

The Cauchy problem for the quadratic fractional heat equation reads

$$u_t + (-\Delta)^{\alpha} u = \mp u^2, \tag{1.1}$$

$$u(0,\cdot) = u_0,$$
 (1.2)

where $u = u(t, x) \in \mathbb{R}$, $\alpha \in [0, 1]$, $t \in (0, T)$, T > 0, $x \in \mathbb{R}$ or \mathbb{T} and $(-\Delta)^{\alpha}$ is the Fourier multiplier by $|\xi|^{2\alpha}$. In this paper, we consider actually the corresponding integral equation which is given by

$$u(t) = S_{\alpha}(t)u_0 \mp \int_0^t S_{\alpha}(t-\sigma) \left(u^2(\sigma)\right) d\sigma, \qquad (1.3)$$

where $S_{\alpha}(t)$ is the linear fractional heat semi-group and are interested in local wellposedness and ill-posedness results in the Besov spaces $B_2^{s,q}(K)$ with $s \in \mathbb{R}$, $q \in [1, \infty[$ and $K = \mathbb{R}$ or \mathbb{T} .

Let us recall that the Cauchy problem associated with the nonlinear heat equation in \mathbb{R}^n

$$u_t - \Delta u = \mp u^k \,, \tag{1.4}$$

where k is a positive integer, has been studied in many papers (see for instance [2–6, 8,10–13,15–18] and references therein). It is well-known that this equation is invariant by the space-time dilation symmetry $u(t,x) \mapsto u_{\lambda}(t,x) = \lambda^{\frac{2}{k-1}} u(\lambda^2 t, \lambda x)$ and that the homogeneous Sobolev space $\dot{H}^{\frac{n}{2}-\frac{2}{k-1}}$ is invariant by the associated space dilation symmetry $\varphi(x) \mapsto \lambda^{\frac{2}{k-1}} \varphi(\lambda x)$. The Cauchy problem (1.4) is known to be well-posed in H^s for $s > s_c = \frac{n}{2} - \frac{2}{k-1}$ except in the case (n,k) = (1,2). Indeed, in this case the well-posedness is only known in H^s for s > -1 and in [8] it is proven that the flow-map cannot be of class C^2 below H^{-1} . Hence, this result is close to be optimal if one requires the smoothness of the flow-map. Recently, it was proven in [7] that the associated solution-map: $u_0 \mapsto u$ cannot be even continuous in H^s for s < -1. The first aim of this work is to push down the well-posedness result to the end point H^{-1} . The second step is to extend these type of results for the one-dimensional quadratic fractional heat equation (1.1). Indeed we will derive optimal results for the Cauchy problem (1.1) in the scale of the Besov spaces $B_2^{s,q}$ in the case $\frac{1}{2} < \alpha \leq 1$. In particular we will prove that the lowest reachable Sobolev index is $-\alpha$ that is strictly bigger than the critical Sobolev index for dilation symmetry that is $1/2 - 2\alpha$.

To reach the end-point index $H^{-\alpha}$ we do not follow the classical method for parabolic equations (cf. [3,10,18]) that does not seem to be applicable here. We rather rely on an approach that was first introduced by Tataru [14] in the context of wave maps. Note that we mainly follow [9] where this method has been adapted for dispersive-dissipative Download English Version:

https://daneshyari.com/en/article/4589994

Download Persian Version:

https://daneshyari.com/article/4589994

Daneshyari.com