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We show how a theorem about the solvability in C1,1 of 
special Isaacs equations can be used to obtain existence 
and uniqueness of viscosity solutions of general uniformly 
nondegenerate Isaacs equations. We apply it also to establish 
the C1+χ regularity of viscosity solutions and show that 
finite-difference approximations have an algebraic rate of 
convergence. The main coefficients of the Isaacs equations are 
supposed to be in Cγ with γ slightly less than 1/2.
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1. Introduction

The goal of this article is to present a purely PDE exposition of some major results 
in the theory of viscosity solutions for uniformly nondegenerate Isaacs equations.
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Let Rd = {x = (x1, ..., xd)} be a d-dimensional Euclidean space. Assume that we are 
given separable metric spaces A and B, and let, for (α, β, x) ∈ A ×B×R

d, the following 
functions be given:

(i) d × d matrix-valued aαβ(x),
(ii) R

d-valued bαβ(x), and
(iii) real-valued functions cαβ(x) ≥ 0, fαβ(x), and g(x).

Let S be the set of symmetric d × d matrices, and for (uij) ∈ S, (ui) ∈ R
d, and u ∈ R

introduce

F (uij , ui, u, x) = sup inf
α∈A β∈B

[
aαβij (x)uij + bαβi (x)ui − cαβ(x)u + fαβ(x)

]
,

where and everywhere below the summation convention is enforced and the summations 
are done inside the brackets.

For a sufficiently smooth function u = u(x) also introduce

Lαβu(x) = aαβij (x)Diju(x) + bαβi (x)Diu(x) − cαβ(x)u(x),

where, naturally, Di = ∂/∂xi, Dij = DiDj . Denote

F [u](x) = F
(
Diju(x), Diu(x), u(x), x

)
= sup inf

α∈A β∈B

[
Lαβu(x) + fαβ(x)

]
. (1.1)

Also fix a sufficiently regular domain G ⊂ R
d. Under appropriate assumptions which 

we list in Section 2 and which include the boundedness and continuity with respect to x
of the data and uniform nondegeneracy of aαβ(x) the Isaacs equation

F [u] = 0 (1.2)

in G with boundary condition u = g on ∂G has a viscosity solution w ∈ C(Ḡ). Recall 
(see [4]) that this means that for any smooth φ(x) and any point x0 ∈ G at which φ −w

attains

(i) a local maximum which is zero we have F [φ](x0) ≤ 0,
(ii) a local minimum which is zero we have F [φ](x0) ≥ 0.

We are going to discuss the existence, uniqueness, regularity properties of w, and the 
rate of convergence of finite-difference approximations to w and, therefore, we give a brief 
account of basic facts known for the Isaacs equations. We only discuss these equations 
although in the references below more general equations are considered and more details 
can be found. For brevity, when we mention that, say, a is uniformly continuous in x, 
we mean that a is continuous in x uniformity with respect to α, β, x. The Lipschitz 
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